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Abstract 

An atmospheric visibility measurement system capable 
of quantifying the most common operating range of on-
board exteroceptive sensors is a key parameter in the 
creation of driving assistance systems. This information is 
then utilized to adapt sensor operations and processing or 
to alert the driver that the onboard assistance system is 
momentarily inoperative. Moreover, a system capable of 
either detecting the presence of fog or estimating visibility 
distances constitutes in itself a driving aid. In this paper, 
we present a technique to estimate the mobilized visibility 
distance through use of onboard CCD cameras. This dis-
tance represents the distance to the most distant object on 
the road surface having a contrast above 5 %. This defini-
tion is very close to the definition of the meteorological 
visibility distance proposed by the International Commis-
sion on Illumination (CIE). Our method combines the 
computations of a depth map of the vehicle environment 
using stereovision and of local contrasts above 5 %. In 
this paper, both methods are described separately. Then, 
their combination is detailed. Our method is operative in 
every kind of meteorological conditions and is evaluated 
thanks to video sequences under sunny weather and foggy 
weather.  

1 Introduction 
Perception sensors (cameras, laser, radar) are being in-

troduced into certain vehicles. These sensors have been 
designed to operate within a wide range of situations and 
conditions (weather, luminosity, etc.) with a prescribed set 
of variation thresholds. Effectively detecting when a given 
operating threshold has been surpassed constitutes a key 
parameter in the creation of driving assistance systems 
that meet required reliability levels. With this context in 
mind, an atmospheric visibility measurement system may 
be capable of quantifying the most common operating 
range of onboard exteroceptive sensors. This information 
is then utilized to adapt sensor operations and processings, 
to automate tasks such as turning on the fog lamps or to 
alert the driver that the onboard assistance system is mo-
mentarily inoperative. Moreover, a system capable of 
either detecting the presence of fog or estimating visibility 
distances constitutes in itself a driving aid. During foggy 
weather, humans actually tend to overestimate visibility 
distances [10], which can lead to excessive driving speeds. 
In this paper, we present a generic method to estimate the 
visibility distance. 

2 Mobilized and Mobilizable Visibility Dis-
tances    

For the CIE [1], the meteorological visibility distance is 
the greatest distance at which a black object of a suitable 
dimension can be seen in the sky on the horizon. On the 
Fig. 1, we represent a simplified road. We can see from 
the Fig. 1a that the most distant visible object is the ex-
tremity of the last road marking. It could be the roadside, a 
shadow... However, the extremity location depends on the 
vehicle position. We call this distance to the most distant 
visible object, which depends on the road scene, the mobi-
lized visibility distance Vmob. This distance has to be 
compared to the mobilizable visibility distance Vmax. This 
is the maximum distance at which a potential object on the 
road surface would be visible. 

 
 

 
 
 
 
 
 
 
 

Figure 1: examples of mobilized and mobilizable 
visibility distances. 

 
Consequently, we have: 

mobmax VV ≥    (1) 

 Under few assuptions, the mobilizable visibility dis-
tance is very close to the meteorological visibility distance. 
In [2][3], we succeed to instantiate Koschmieder’s model 
[9] and then to estimate the meteorological visibility dis-
tance. This method, when its operation assumptions are 
met, leads to obtain good results under daytime foggy 
weather. 

In order to cover more meteorological situations than 
solely day fog weather, we propose in this paper to esti-
mate the mobilized visibility distance. In this aim, we 
estimate the distance to the most distant object on the road 
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surface having a contrast above 5 %. Thus, this method is 
very close to the definition of the CIE. 

This paper is broken up into three parts. The first one 
presents a method to compute a depth map of the vehicle 
environment (section 3). The second part presents a 
method to extract picture elements whose contrast is 
above 5 % (section 4). Finally, thanks to the combination 
of both previous techniques, the mobilized visibility dis-
tance can be obtained (section 5). 

3 Computation of a Depth Map of the En-
vironment by Stereovision 

In this section, we present our stereoscopic sensor. Then, 
we present our technique to compute a depth map of the 
environment using the "v-disparity" approach. The differ-
ent stages of computation of this depth map are detailed. 

 

3.1 Modeling of the stereo sensor 
 
 
 
 

 
 

 
 

 
 

 
 

Figure 2: (a) the stereo sensor and the coordinate 
systems used. (b) Cameras currently in use in the 
prototype cars of the LIVIC. (c) Calibration site on 
the test track at Versailles. 

 
The two image planes of the stereo sensor are supposed 

to belong merely to the same plane and are at the same 
height above the road (see Fig. 2a). This camera geometry 
means that the epipolar lines are parallel. 

 
3.2 The image of a plane in the "v-disparity" 

image 
In this study, we segment the environment into planes 

which are horizontal, vertical or oblique with respect to 
the plane of the stereoscopic sensor. In a cross-section of 
the scene in the optical axis of the camera, the projection 
of any of these planes is a straight line. In the rest of this 
paper, we will build and use a specific image representa-
tion, in which the detection of straight lines will be 

equivalent to the detection of planes in the scene. Indeed, 
we will represent the v coordinate of a pixel towards the 
disparity ∆ and detect straight lines and curves in this 2D 
image. The mathematical details are given in [8]. 

 
3.3 "V-disparity" image construction and 3D 

surface extraction 
To compute a disparity map I∆, the primitives used are 

horizontal local maxima of the gradient. The matching 
process is based on normalized correlation around the 
local maxima. It is quite simple and fast. Once I∆ has been 
computed, the "v-disparity" image Iv∆ is built by accumu-
lating the pixels of same disparity in I∆ along the v axis. 
Then straight lines are detected in Iv∆ thanks to a hough 
transform. This leads to extract global surfaces, which 
correspond either to the road surface, or to obstacles. De-
tails of this method are given in [8]. The accuracy of the 
method is presented in [6]. 

3.4 Disparity map improvement 
In order to quickly compute the "v-disparity" image, a 

sparse and rough disparity map has been built. This dis-
parity map may contain numerous false matches, which 
prevents us to use it as a depth map of the environment. 
Thanks to the global surfaces extracted from the 
"v-disparity" image, false matches can be removed. In this 
aim, we check whether a pixel of the disparity map be-
longs to any global surface extracted using the same 
matching process. If it is the case, the disparity value is 
mapped to the pixel. 

 

Figure 3: images captured in the vehicle (a) under 
sunny weather, (b) under foggy weather. Examples 
of disparity map of the vehicle environment (c) 
under sunny weather, (d) under foggy weather. 
White points are considered as obstacles points. 
The gray level of other points is proportional to 
their disparity. 

4 Computation of Contrasts above 5 %  

4.1 Measuring the local contrast with Köhler’s 
binarization technique 

 
Köhler’s technique [5] used to binarize images finds the 

threshold which maximizes the contrast between two parts 
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of the image. Let f be a gray level image. A couple of pix-
els (x,x1) is said to be separated by the threshold s if two 
conditions are met. First, x1∈V4(x). Secondly, the condi-
tion (2) is respected: 

 
))(),(max())(),(min( 11 xfxfsxfxf <≤  (2) 

 
Let F(s) be the set of all couples (x,x1) separated by s, 

such as x∈V4(x1). With these definitions, for every value 
of s belonging to [0,255], F(s) is built. For every couple 
belonging to F(s), the local contrast Cx,x1(s) is computed: 
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The mean contrast (4) associated to F(s) is then per-
formed: 
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The best threshold s0 verifies the following condition: 
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=   (5) 

s0 is the threshold which has the best mean contrast 
along the associated border F(s0). Instead of using this 
method to binarize images, we use it to measure the con-
trast locally. The evaluated contrast is then equal to 2C(s0) 
along the associated border F(s0). 

4.2 Adaptation to the logarithmic contrast 
The previous method is suitable for different defini-

tions of local contrast. To use another local contrast 
definition, it is enough to use the desired definition in the 
place of Eq. (3). In our case, we have chosen to estimate 
the logarithmic contrast [4] so as to be compatible with 
the definition of the meteorological visibility distance  
proposed by the CIE (cf. section 2). So, Eq. (3) becomes: 
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4.3  Some good properties of our technique 
Our technique, inspired from Köhler, is robust to noise. 

However, the computational cost of the technique is high. 
A direct implementation of the technique takes 14s to be 
performed on a whole image of resolution 380x289 on a 
Pentium IV 2.4 Ghz. By reducing the thresholds number 
and precalculating the MIN-MAX images, the computing 
time is inferior to 1s. By vectorizing the optimized algo-
rithm, the computational cost is then about 350ms on a 
whole image. 

 

Figure  4: examples of contrasts computation  
above 5 %, (a) under sunny weather, (b) under 
foggy weather. 

5 Estimation of the Mobilized Distance of 
Visibility 

In section 3, we described the computation of a depth 
map of the vehicle environment. In section 4, we pre-
sented a method to compute the local contrasts above 5 %. 
To estimate the visibility distance, we have to combine 
both. 

5.3 Direct disparity-contrast combination 
The first approach is to replace the computation of the 

horizontal local maxima of the gradient by the horizontal 
contrasts above 5 %. So, the visibility distance is the dis-
tance of the matched pixel having the smallest disparity. 
This approach is simple. Its main advantage is to replace 
the gradient threshold, which is empirically chosen, by the  
contrast threshold of 5 %. Unfortunately, it is too much 
time consuming for our real-time application. 

5.4 Fast disparity-contrast cooperation 
The contrast computation locates precisely the edges, 

but is quite expensive in term of computing times. Con-
versely, the gradients computation goes fast but spreads on 
the edges. Consequently, using the horizontal gradients, 
the "v-disparity" image is denser and faster to compute. 
The 3D surface extraction is also faster and more reliable. 
However, we must ensure that the gradient threshold is 
small enough, so as to take most picture elements having a 
contrast above 5 % into account, but large enough so as to 
not take too much noise into account. The noise measured 
on the cameras currently in use is gaussian with a standard 
deviation σ of 1 to 2 gray levels. The gradient threshold to 
consider is then 3σ, that is to say 6. 

 
It is possible to draw advantage from the two tech-

niques while decreasing the computing time compared to 
the only use of horizontal contrasts. The method consists 
in computing the improved disparity map using the hori-
zontal gradients higher than 6 and to scan it. Because most 
distant objects on the road surface are on the horizon line, 
the scanning starts from the horizon line. Within each 
neighborhood where a point of disparity is known the con-
trast is computed. The process stops when a contrast 
above 5 % is met. The visibility distance is then the depth 
of the picture element with a contrast above 5 %. 

 

 
Figure 5: algorithm overview. 

 

6 Results 

The whole process for building the depth map of the 
vehicle environment  and computing the mobilized visi-
bility distance by means of our modified Köhler’s contrast 
technique is performed within 60 ms with a current-day 
PC. The hardware used for the experiments is a Pentium 
IV 2.4 GHz. Images are grabbed using a Matrox Meteor II 
graphic card. The focal length is 8.5 mm and image size is  
380x289. 

592
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On Fig. 3, results of the disparity map computations are 

presented. On Fig. 3a, the pedestrian, the car and pixels 
beyond horizon line are considered as obstacles pixels. 
The depth of the pixels on the road surface is computed. 
In the same way, on Fig. 3b, the car is considered as an 
obstacle. 

On Fig. 4, results of local contrast computation on the 
whole images are represented. In fact, as explained in sec-
tion 5, the contrast will not be computed on the whole 
image to save computing time. On Fig. 6, the final result 
is represented. 

Finally on Fig. 7, the curves of measured visibility dis-
tances are plotted for both video sequences of 1000 
images each. Under sunny weather, the maximum resolu-
tion of the stereoscopic sensor is reached. Moreover, the 
visibility distance measurement for a video sequence un-
der dense fog before night-fall is given. Unfortunately, for 
lack of place, this sequence can not be illustrated.  

To conclude, we can say that under foggy weather, the 
visibility distance measurements are quite stable which let 
us think that the method is efficient in adverse weather 
conditions. 

 

Figure 7: curves of measured mobilized visibility 
distances (----) under sunny weather, (──) under 
foggy weather, (….) under dense foggy weather 
before night-fall. 
 

7 Conclusion 
 
In this paper, we presented a generic method to estimate  

the mobilized visibility distance, which is the distance to 
the most distant picture element on the road surface hav-
ing a contrast above 5 %. This method is close to 
definition of the meteorological visibility distance. We use 
the "v-disparity" stereovision approach to build a depth 
map of the vehicle environment. We combine this map 
with the computation of local contrasts by means of a 
technique inspired by R. Köhler. The whole process is 
real-time performed. This technique, which has been re-
cently patented, has very few assumptions. Consequently, 
it is operative under lots of meteorological conditions. In 
order to evaluate the performance of our method, we are 
currently using specific targets so as to provide a reference 
measure of the atmospheric diffusion. 
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Figure 6: final result. The most distant window 
having a contrast above 5 %, on which a point of 
disparity is known, is painted white. The disparity 
point is represented with a black cross inside the 
white window. (a) sunny weather (Vmob≈260m), (b) 
foggy weather (Vmob≈75m). 
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