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Abstract

It is important in many applications of 3D and higher di-
mensional segmentation that the resulting segments of vox-
els are not required to have only one connected component,
as in some of extant methods. Indeed, it is generally nec-
essary to be able to automatically determine the appropri-
ate number of connected components. More generally, for
a larger class of applications, the segments should have no
topological restrictions at all. For instance, each connected
component should be allowed to have as many holes as ap-
propriate to fit the data.

We propose a method based on a graph algorithm to
automatically segment 3D and higher-dimensional images
into two segments without user intervention, with no topo-
logical restriction on the solution, and in such a way that
the solution is optimal under a precisely defined optimiza-
tion criterion.

1 Introduction

A situation often occurs that a multi-dimensional array
that assigns data to each multi-dimensional slot (voxel) is
given and a need arises to partition the set of voxels into two
or more subsets according to the data. For instance, three-
dimensional arrays of data are obtained representing one
or more physical properties at regular grid positions within
the interior of solid bodies. Such data may be obtained
by non-intrusive methods such as computed axial tomogra-
phy (CAT) systems, by magnetic resonance imaging (MRI)
systems, or by other non-intrusive mechanisms such as ul-
trasound, positron emission tomography (PET), emission
computed tomography (ECT) and multi-modality imaging
(MMI). Each of these techniques produces a planar, grid-
like array of values for each of a succession of slices of
the solid object, thus providing a three-dimensional array
of such values. Typically, the solid object is a human body
or a portion thereof, although the method is equally appli-
cable to other natural or artificial bodies. In the case of CAT
scanning, the physical value is the coefficient of x-ray ab-
sorption. For MRI, the physical values are the spin-spin and
the spin-lattice relaxation echoes. In any event, the mea-
sured physical values refl ect the variations in composition,
density or surface characteristics of the underlying physical
structures. Likewise, such three-dimensional arrays of in-
terior physical values are utilized to generate visual images
of the interior structures within the body. In the case of the
human body, the visual images thus produced can be used
for medical purposes such as diagnostics or for the planning
of surgical procedures. In order to display two-dimensional
images of such three-dimensional interior structures, how-
ever, it is necessary to locate the position of the boundary
of such structure within the array of physical values. A

significant problem in displaying such internal surfaces is,
therefore, the need to segment the data samples into the var-
ious tissues. This has been accomplished by simply decid-
ing the structure to which each voxel belongs by compar-
ing the data associated to the voxel to a single threshold
value, or to a range of threshold values, corresponding to
the physical property values associated with each structure
or its boundary. Bones or any other tissue, for example,
can be characterized by a known range of density values
to which the array values can be compared. Such simple
thresholding, however, is too susceptible to noise. That is,
at the boundary, voxels with values near threshold can be
swayed either way by a smallest noise, giving very noisy
result. What is needed is to incorporate the tendency of
nearby voxels to belong to the same partition. Domains
of applications of segmentation other than medical applica-
tions include graphics, visualization tools, and reconstruc-
tion of 3D objects. In graphics, an object from an image
are segmented. When there is a sequence of image (video),
it can be considered a 3D image. Thus a segmentation of
moving object from a video sequence is an application of
3D segmentation. Also, the data array is not limited to 3D.
Higher dimensional applications include four-dimensional
segmentation of a temporal sequence of 3D images, such
as a 3D image of beating heart. It is important in many ap-
plications that the resultant sets of voxels are not restricted
in the number of connected component. Indeed, it is gen-
erally necessary to be able to automatically choose the ap-
propriate number of connected components. Moreover, for
a larger class of applications, the subsets should have no
topological restrictions at all. For instance, each connected
component should be allowed to have as many holes as ap-
propriate to fit the data.

2 Previous Work

Conventional methods have at least one of the follow-
ing three shortcomings: they either i) have topological re-
strictions on the solution, ii) are not guaranteed to reach
the optimal solution, or iii) need user help or intervention.
Some methods presuppose the nature of the set to be found.
For instance, if arteries are expected, some methods try to
find one-dimensional object with some thickness, making it
difficult to find bifurcating arteries. An algorithm that has
desirable topological properties is suggested in [3], based
on Level Sets method. Yet, it is a gradient-descent method
with no guarantee to reach the optimal. Region Growing
methods, similarly, have good topological properties, but
require user intervention to select the regions. Moreover, no
Region Growing method is an optimization method, that is,
they are not guaranteed to give optimum solutions. Another
technique described in Shi and Malik [6] uses a graph tech-
nique, which approximates the solution (i.e., it is not guar-
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Figure 1. The graph that is used in the method. It has
two special vertices s and t, and one vertex for each
input voxel. The edges of the graph connect each
voxel vertices to s and t, as well as among the voxel
vertices, according to the neighborhood structure of
the image.

anteed), and perhaps does not have the same topological
properties. The present method uses similar technique used
in other area, 2D image restoration, described in Greig, et.
al [5].

3 The Method

In this paper, we describe a method to automatically seg-
ment 3D and higher-dimensional images into two subsets
without user intervention, with no topological restriction on
the solution, and in such a way that the solution is optimal
in a precisely defined optimization criterion, including an
exactly defined degree of smoothness. The method uses a
weighted graph (Figure 1.) The vertices include two special
vertices, s, t, and vertices that correspond to input voxels.
The edges of the graph connect each voxel vertices to s and
t, as well as among the voxel vertices themselves, according
to the neighborhood structure of the image. The edges have
nonnegative weights. A minimum-cut algorithm is used to
cut the graph in two. That is, the set V of vertices are par-
titioned into two disjoint subsets, one including s and the
other t. Then, each of the input voxels are segmented ac-
cording to the membership of the corresponding vertex to
the graph partitions.

Hereafter, the dimension of the input data is denoted by
d. In the segmentation problem, a d-dimensional data struc-
ture is given as the input to the method. The data structure
will be called an “image” , and has voxels and neighborhood
structure:

1. Each voxel has associated data, such as a number or
a vector. Voxels are conceptually laid out in a d-
dimensional configuration. For instance, a 3D (d = 3)
image can be a simple box of size L × N × M , or it
can also be a subset of such a d-dimensional box.

2. The neighborhood structure is defined by specifying a
small set of “neighbor voxels” for each voxel, accord-
ing to the application. In other words, it is specified,

among all voxels, which voxel is neighboring which
other voxels. The neighborhood structure is symmet-
ric in the sense that if a voxel v is a neighbor of another
voxel u, then u is also a neighbor of v. The simplest
set of “first nearest neighbors” for a voxel includes 2d
nearest voxels given by increasing or decreasing one of
d coordinate entries by 1. The “second nearest neigh-
bors” are those obtained by changing two of the coor-
dinate entries by 1. Similarly, a k-th nearest neighbor
of a voxel v has k coordinate entries that are different
by 1.

The method partitions the voxels into two complemen-
tary subsets S and T , or, equivalently, assigns one of two
labels s or t to each voxel. The image will be segmented in
the sense that voxels in S, to which label s is assigned, will
represent the “interesting” voxels for each particular appli-
cation, such as voxels corresponding to arteries. It is an ad-
vantage of the present method that there is no topological
restriction on the resultant subsets. Moreover, our method
is completely automatic with no need for user intervention,
although it allows the user to intervene as desired in the pro-
cess to improve or correct the results of the fully automatic
system.

The criterion as to how the image should be segmented
is given by defining a set of numbers:

(a) For each voxel v, a number a(v).

(b) For each neighboring pair v and u, a nonnegative num-
ber b(v, u). It is 0 for non-neighboring pairs. Note that
b(v, u) and b(u, v) can be different.

Then, the criterion is that the partition shall be given so that
the sum ∑

v∈T

a(v) +
∑

v∈S , u ∈T

b(v, u) (1)

is minimum over all possible assignments. The number
a(v) represents the likelihood of v to belong to S. If a(v)
is positive, v is more likely to belong to S in an assign-
ment with a minimum sum (1). If it is negative, it is more
likely to be in T in an assignment with a minimum sum (1).
This is usually given by the local evidence from the data
that the voxel belongs to S. The number b(v, u) expresses
the likelihood of the boundary coming between v and u in
such a way that v is in S and u is in T . It shall be larger if
such likelihood is smaller. This can refl ect, for instance, the
gradient of the image at the point, so that the high-gradient
points are more likely to be on the boundary, or it can be
constant just to realize general cohesiveness. As an exam-
ple of how these numbers may be selected, suppose that the
probabilities

• P (v), of the voxel v belonging to S; and

• P (v, u), for neighboring voxels v and u, of v belong-
ing to S and u belonging to T ;

are known. Then one possible way is to set

a(v) = A log (2P (v)),

b(v, u) = −B log (P (v, u)),

where A and B are some positive numbers. In this case we
can see this is a first order Markov Random Field optimiza-
tion problem.

The main idea of the method is to map the voxels to spe-
cially interconnected vertices in a graph. A directed graph
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Figure 2. Top: Sample slices of an MRI data. Bottom: The result of segmenting the data; the white part is the
segmented tumor.

with edge weights is created. An edge from a vertex v to an-
other vertex u is denoted hereafter by an ordered pair (v, u).
The graph contains the following:

(a) There is one vertex for each voxel. This type of vertex
is hereafter called the voxel vertex corresponding to
the voxel, and the voxel vertex corresponding to voxel
v is denoted by the same letter v.

(b) There also are two special vertices s and t that corre-
spond to the two labels s and t, respectively.

(c) There are edges between voxel vertices. They repre-
sent the neighborhood structure between voxels, i.e.,
voxel vertices corresponding to neighboring voxels are
connected by an edge.

(d) For every voxel vertex v, there is an edge (s, v) from
s to v and an edge (v, t) from v to t.

Then, nonnegative edge weights are assigned. For each
voxel vertex v, the edge (s, v) is given a nonnegative weight
w(s, v) and the edge (v, t) a nonnegative weight w(v, t).
These weights are selected so that the following holds:

w(s, v) − w(v, t) = a(v).

Each voxel vertex v is also connected to its neighbors. For
each neighbor u of v, there are edges (v, u) and (u, v). The
edge (v, u) is assigned a weight w(v, u) = b(v, u) and the
edge (u, v) is assigned a weight w(u, v) = b(u, v). These
weights are chosen so that the segmentation criterion ex-
actly corresponds to a condition on a cut of the graph. Here,
a cut is a partition of the graph into two parts, one including
s and the other t. Then, each voxel vertex belongs to one of
the parts, either including s or t. This defines a segmenta-
tion of the image: a vertex that belongs to the same partition
as vertex s is assigned the label s, and a vertex that belongs
to the same partition as vertex t is assigned the label t. If

an edge goes out from the part including s to the one in-
cluding t, the edge is said to be “ in the cut.” This gives the
method an ability to take neighbor interaction into account.
There is one-to-one correspondence between partitions of
vertices and voxels. A score of the assignment (segmenta-
tion) is given by the sum of the edge weights that are in the
cut. The segmentation problem is thus mapped to a problem
of finding the “ minimum cut” , that is, a cut with the min-
imum score. Thus, if a minimum-cut algorithm is applied
to the graph, the minimum cut found corresponds to the op-
timal segmentation that minimizes the sum (1), because of
the way that the edge weights are defined. Any variant of
minimum-cut algorithms would suffice, which are known
to solve this problem in polynomial time in terms of the
number of vertices and edges in the graph. The method
possesses all topological properties as described/required
above and can be applied to graphs embedded in any di-
mension, not only 3D.

Finally, voxels are segmented according to the cut of the
graph. If a voxel vertex belongs to the same partition as
s, the voxel to which it corresponds is assigned the label
s and belongs to S. Otherwise, it is assigned the label t
and belongs to T . Thus, the method partitions the voxels
into two complementary subsets S and T , or, equivalently,
assigns one of two labels s or t to each voxel, according to
the criterion stated above.

4 Experiments

We applied the method to 3D data. Figure 2 shows the
result of segmenting an MRI data on the top row. The data
is 124 slices of 256 × 256 array of 10-bit numbers (total
of 8,126,464 voxels,) each voxel representing a physical di-
mensions of 0.9375mm × 0.9375 mm × 1.5mm slice thick-
ness. The target area was the approximate brain part of the
image. A tumor (meningioma in left frontal lobe) is seg-
mented and shown as the white region in the images on the
bottom row.
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Figure 3. Top: Sample slices of an angiogram data. Bottom: The result of segmenting the data, rendered as seen from
three points of view.

We also applied the method to a cerebral angiogram data.
The data is 60 slices (half a head) of 256× 256 array of 10-
bit numbers (total of 3,932,160 voxels.) The result is shown
in Figure 3 in three angles. The full picture of network of
blood vessels can be seen. As the advantage of this method
is that it is not constrained topologically, disconnected com-
ponents or bifurcating vessels are no problem.

In the experiments, first nearest neighbors are used. The
coefficient a(v) at voxel v was given by a(v) = c · (I(v)−
r)2 − q, where I(v) is the 10-bit data value at v, and c, q, r
are positive constants; for the edge coefficients b(v, u), a
constant was used. The method is not too sensitive to
small differences in parameters c, q, and r: these parame-
ters can be easily determined to give a good segmentation in
a few trials. For minimum-cut algorithm, we used the push-
relabel method for the maximum-fl ow problem (which is
well-known to be equivalent to the minimum-cut problem)
that is described in [2]. It took 3 to 7 minutes to compute
these particular examples on a 3.2GHz machine, utilizing
up to 500MB of memory.

5 Conclusions

We have described a method for segmenting 3D and
higher dimensional images into two segments, without
any topological restriction on the resultant segments. The
method is based on a graph algorithm, and it achieves a
solution that is optimal under a precisely defined optimiza-

tion criterion. We have also demonstrated the utility of the
method by experiments.
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