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ABSTRACT

An improved growing deformable surface patches algorithm
and its application in medical image analysis are presented
in this work. In this proposed method, a growing mecha-
nism is introduced to 3D deformable model. After a surface
patch is initialized within the external force field, it is de-
formed to reach and stop at the boundary of the object and
anchored there. New surface patches are initialized based
on the existing anchored patch for deformation in the sub-
sequent deformation iterations. This process is repeated un-
til a closed out surface of the object is obtained. With the
growing framework, the proposed deformable model could
achieve topology adaptive surface extraction by connecting
new surface patches with active patches and automated tri-
angulating the square patch in particular situations. Further
more, surface curvature adaptiveness is achieved in the pro-
posed deformable model by associating the surface curva-
ture with the size of the surface patches.

Keywords: 3D surface extraction, adaptive topology, de-
formable model, medical image analysis

1. INTRODUCTION AND RELATED WORK

Deformable models are used intensively in object detection.
There has been a significant research effort for achieving
3D object detection based on deformable models as acqui-
sition of 3D data, particularly in biomedicine, has become
more and more common for the past decade. However topo-
logical transformation is a problem for 3D deformable sur-
face models. In those deformable models which incorporate
a priori geometric knowledge, the object of interest is as-
sumed to have the same topology with the object in training
samples where the priori knowledge comes from. Even in
many deformable models without incorporating a priori ge-
ometric knowledge, topology of the object must be known
in advance since classical deformable models are paramet-
ric and are incapable of topological transformations without

additional machinery.

Deformable models have mainly two formulations: para-
metric form and implicit form. The advantage of implicit
deformable models is their topological adaptability of the
model. However, their topology is not explicit. If there
are gaps in the object, the evolving model will leak through
gaps. Deformable models in parametric form are not only
compact, but also is robust to both image noise and bound-
ary gaps. However traditional parametric deformable mod-
els can not handle topological transformation.

In the past years, many ideas were introduced in tra-
ditional 2D or 3D deformable models in order to increase
their performance. 2D and 3D statistical deformable mod-
els have been a widely used method in computer vision. A
priori knowledge is incorporated into deformable models
for robust automatic object segmentation and reconstruc-
tion. However, it also has problems in real applications.
The complicated procedure for building a PDM (Point Dis-
tribution Model) from training data is difficult and time con-
suming, especially for its applications in 3D object detec-
tion in medical image analysis. The tradeoff of statistical
deformable models is to lose their flexibility. If the target
is not similar to any sample in the training set, the result
will be bad because the strong parameter constrains will
limit the template to find the correct boundary of the object.
This situation does happen in real application. For exam-
ple, the size, shape, location and rotation of brain tumor is
greatly variable according to different patients. It is very
hard to train a PDM in this case. And the shape of brain
ventricle, which is widely used to test statistical deformable
in recent published papers, will also vary significantly and
unpredictably because of diseases. Statistical deformable
models will meet great difficulty to detect objects with arbi-
trary shape variance. In this aspect, traditional explicit de-
formable models have more flexible ability. However, tradi-
tional explicit deformable models are incapable of topolog-
ical transformation without additional machinery. Paramet-
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ric deformable model are bound to their intrinsic topology:
deformable models give prior information on the shape of
the objects to recover. If the original model shape is too dif-
ferent from the data, the model might not be able to deform
correctly.

A dynamic model, topologically adaptable surfaces (T-
surfaces), introduced by Mclnerner [1] can automatically
change its topology with regard to its variable geometry.
T-surfaces use a superposed affine cell grid to reparame-
terize the models during their evolution. As the T-surface
move under the influence of external and internal forces, it
is reparameterized with a new set of nods and triangles by
computing the intersection points of the model with the su-
perposed grid. This reparametrization performs topological
transformations in an implicit way.

An explicit deformable model: deformable meshes with
automated topology changes was presented by Lachaud [2].
In this model, a framework for topology changes is pro-
posed to extract complex object: within this framework, the
model dynamically adapts its topology to the geometry of
its vertices according to simple distance constrains. There-
fore no a priori assumption is made on the topology of ob-
jects. The topology of the model is adapted to the geometry
of its vertices at each step without user interaction, topolog-
ical modifications are made locally.

2. OUR APPROACH

2.1. Framework

The proposed algorithm includes two iteration loops (shown
in Figure 1): the inner loop for deforming each surface
patch and outer loop for the growth of the entire surface
model. The inner loop is to deform surface patches sepa-
rately with the help of particular internal force which is de-
signed to support deformation with anchored” edge. More
details are presented in Section 4. The outer loop, based on
the growth mechanism, is designed to achieve topologically
adaptable object detection.

In our model M, M € R2, the smallest element is a
square surface patch S; [3]. Only a surface patch S is ini-
tialized in the first stage. Under the influence of internal
force f;,: and external force f.,;, it is deformed to reach
and stop at the boundary of the object and is labelled as
an “anchored” patch S,,.1. Then a new surface patch,
Si,i # 1, is initialized based on the existing anchored patch
S.ne for deformation in the next iteration.

Two connected patches, S;, S, # j, will share a com-
mon edge. This edge will be set as ”connected” edge. The
bare edge which is free and ready for connecting with other
patch is labelled as ’bare” edge. New surface patches S; are
generated from “anchored” patches S, and the participant
edges are relabelled. In order to represent the entire out sur-
face of an object without overlapping or gap, a square patch

| Caleulate external force field |

¥

| Sutface patch initialization |

!

| Build active surface patch pool |

v

Initialize new —E-( Surface patch deformation ]-&
sutface patch

based on fixed N

patches

¥
|Update active surface patch pooll

lose surface?

Fig. 1. Flowchart of growing deformable surface patches
model

is triangulated by merging two vertexes when the average
curvature of the surface increases or decreases significantly
or in the situation that surface patches come to a pole of
the object to generate a close out surface when the average
curvature of the surface does not change.

This process is repeated until a closed out surface of
the object is obtained. The stopping criteria of each surface
patch is similar with traditional deformable models: if the
total energy on surface patch reaches the minimum value,
the deformation procedure for this surface patch stops. Our
model will stop if the entire closed surface stopping criteria
is satisfied: there is no “bare” edge among all the surface
patches S; any more. The final result of our model, M,
is a closed surface which consists of a number of surface
patches S; (square patches or triangulated patches). Each
surface patch is connected with nearby patches, sharing the
same edges of the connected patches.

2.2. Internal Forces

We define three internal forces that depend on the surface
patch itself and the mean size of the surface patch which is
a global parameter:

fmt(U) :fc(U)+fe(U)+fa(U)' (D

If U(z,y,z) is a knot of the new surface patch, u ex-
presses its coordinates, u is the mid-point of the nearby
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Fig. 2. (a) 6 is near 180° if the surface of the object is sim-
ple; (b) 0 decreases when the surface of the object is com-
plicated

knots of U in the new surface patch.

(A) f.is aforce of curvature regularization which smoothes

the shape of the surface patch, where a is the rigidity coef-
ficient.

VU €S, fo(U) = ac(t —u) 2)

(B) fe is a force that spreads localized deformations and
makes the surface patch adaptive to the local curvature. It
regularizes the edge lengths along the whole surface and
expresses the binding energy. The local curvature of the
model will also influence f.. 6, the angel between two edges
of adjacent knots, is near its maximum 180° if the surface
of the object is simple, shown in Figure 2 (a). When the
surface of the object is complicated, its radius of curvature
decreases significantly, 6 will decrease as well.

Different objects, even different portions in the same
object, have different levels of complexity. To make our
method adaptive to the complexity of the object, we adjust
the size of the individual surface patch with respect to the lo-
cal curvature by adjusting the width of surface patch. Thus,
fe is defined as:

_ d,
WeSiLW)=ae 3 i lvul =),
3)

where

%dw(l — cosb), 4)

«, is the stiffness coefficient, d,, is the desired mean
edge length of surface patches, V' is a knot in S;.

(C) f, is a force to support deformation with ’anchored”
edges, where «, is the response coefficient.

de =

VU € Siavfa(U) = _fc(U) - fE(U)7 (5)
o(V
VU € Szf;fa(U) = Qq Z ”£(13||a
VESia

2.3. External Forces

The function of external force field, Eext, in 3D growing
deformable surface patches algorithm is to guide our surface
model to move towards the boundaries of the target object.
We put the new generated surface patch S; in the force field
v first. Every point U,U € S; is influenced by the force
field. The external force on point U is:

VYU € Siy fezt(U) = Eext(U) (6)

Here we choose gradient vector flow (GVF)[4] field as
our external force field which has a large capture range and
is able to move surface model into boundary concavities. As
mentioned in [4], GVF can be generalized to higher dimen-
sions for application.

3. EXPERIMENTAL RESULTS AND CONCLUSION

Our growing deformable surface patches method could be
applied in medical image analysis. The external forces field
of the object surface is calculated using 3D modified GVF.
In this experiment, we segment and reconstruct the ventricle
from a T2 weighted MR image of human brain. The volume
image size is 256 x 256 x 138. The model parameters are:
dy =6, . = 0.175, o = 0.175, ag, = 0.5, @1 = 0.1 and
as = 0.9. The surface evolution result of the ventricle de-
tection is shown in Figure 3. The final result of the ventricle
detection is shown in Figure 4. To evaluate our algorithm,
we measure the minimum distances between 100 manually
marked boundary points and our obtained surface(Table 1).

Table 1. Experimental results of brain ventricle detection

Number of Surface Patches 794
Initial Patch Width 6 voxel
Number of Marks (manual) 100
Average Distance Error 0.41 Voxel
Maximum Distance Error 3 Voxel

With the novel growing framework, the proposed de-
formable model could achieve topology adaptive surface
extraction by connecting new surface patches with active
patches and automated triangulating the square patch in par-
ticular situations. Compared with existing topological adap-
tive explicit deformable models, 1) we reduce the compu-
tational costs by considering the “active” patches only in
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Fig. 3. The growing steps of our deformable model in hu-
man brain ventricle detection: (a) result with 100 Surface
Patches; (b) result with 200 Surface Patches; (c) result with
300 Surface Patches; (d) result with 400 Surface Patches;(e)
result with 600 Surface Patches.

Fig. 4. Different view of the final result of human brain
ventricle detection: (a) top view; (b) right view; (c) 3D view.

the deformation procedure; 2) we simplify the initialization
step of the deformable model; 3) the geometric informa-
tion of the object is utilized in the step of generating new
surface patches from “anchored” patches; 4) No topology
transformation examination or implementation is needed in
deformation steps. Further more, surface curvature adap-
tiveness is achieved in the proposed deformable model by
associating the surface curvature with the size of the surface
patches.
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