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Abstract

In this contribution we utilize recent advances in feature
coding strategies for a hierarchical Neocognitron-like neu-
ral architecture, which can be used for invariant recogni-
tion of natural visual stimuli like objects or faces. Several
researchers have identified that sparseness is an important
coding principle for learning receptive field profiles that
resemble response properties of simple cells in visual cor-
tex. However, an ongoing discussion is concerned with the
question whether sparseness should be imposed on the la-
tent variables as implicitly done in ICA or Sparse Coding

or if it should rather be imposed directly on the feature
matrix. Since answers to this question have so far not been
unique and were rather qualitative in nature, this paper in-
vestigates the two possibilities by applying a recently in-
troduced algorithm for Non-negative Matrix Factorization
with Sparseness Constraints (NMFSC) to feature learning
in a hierarchical recognition network. For this network, we
compare recognition performance on several difficult image
datasets under varying sparseness settings.

1 Introduction

While computational vision has made significant
progress in the recognition of isolated objects under fixed
imaging conditions, unrestricted environments are still a
major challenge. Since biological vision is highly success-
ful in solving problems like illumination variation, clut-
tered scenes, object deformations and occlusion, computer
vision research increasingly draws upon physiological and
psychophysical findings. Modern approaches that follow
this paradigm often rely on the early findings by Hubel and
Wiesel [6], who determined receptive fields of simple cells
and complex cells in the primary visual cortex of mammals,
and by Barlow [1], who analyzed the behavior of these cells
and firstly suggested that their response properties might
emerge from an efficient coding strategy in the sense of in-
formation theory.

A computational model to account for the idea of effi-
cient coding was introduced by Olshausen and Field [9],
who proposed the notion of sparse coding as a strategy
of learning receptive fields from natural image data. The
method produces results qualitatively similar to those ob-
tained by Independent Component Analysis (ICA) [2].

A recognition architecture that is based on a hierarchi-
cal organization of layers of simple and complex cell arrays
was introduced by Fukushima [4], called the Neocognitron.
The network performs invariant recognition of simple vi-
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sual stimuli like paper clip objects. More recently, Wersing
and Korner [11] introduced a variation of the Neocogni-
tron architecture, which learns receptive field profiles using
a special type of sparse coding algorithm with invariance
constraints to perform robust recognition of natural stimuli,
e.g. objects and faces. The authors could show astonish-
ing invariance performance on a variety of disrupted test
datasets.

The present work extends the approach of [11] by in-
corporating recently proposed advances in feature coding
strategies:

e Chennubhotla and Jepson [3] showed that sparse cod-
ing in some cases fails to extract a “good” representa-
tion of the data and suggested to impose the constraint
on the feature matrix instead.

e Lee and Seung [7] proposed that a non-negativity con-
straint should be imposed on the matrices to obtain
parts based representations and introduced two algo-
rithms for Non-negative Matrix Factorization (NMF),
that can be used to model receptive field learning.

e Hoyer [5] argued, that NMF not always succeeds
to extract parts based representations and introduced
an enhancement, that allows to explicitly control the
amount of sparseness in both the feature matrix and the
latent variables, which he calls Non-negative Matrix
Factorization with Spareness Constraints (NMFSC).

The major advantage of NMFSC is that former ap-
proaches are subsumed (at least qualitatively), therefore,
NMEFSC allows to investigate the effects of non-negativity,
sparseness on the feature matrix and sparseness of the latent
variables (or even all of them together) in a common frame-
work. The goal of this contribution is to integrate NMFSC
into the Neocognitron-like architecture of [11] and to inves-
tigate the effects of combining the afore said mechanisms.

Section 2 describes the hierarchical model, section 3
briefly summarizes the feature coding procedure. Finally,
quantitative experimental results are presented in section 4.

2 The Hierarchical Model

Figure 1 shows a diagram of the hierarchical model that
is used for the experiments in this paper. It is related to
the architectures proposed in [4], [11] and [10]. It has the
following properties:
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Figure 1: The Hierarchical Model. The network consists
of two alternating layers of simple and complex cell planes.
See text for explanation.

e Topology: The model consists of L = 2 layers, in-
dexed ! = 1...L and each holding P, planes of two
types: simple cell planes Sfp and complex cell planes
C’fo with p = 1... . The network input is a gray
value pixel image. In addition to notational conve-
nience, we set Py = 1 and refer to the input image as
C?. An edge between a complex cell plane C’fp_l and
a simple cell plane Sﬁ, denotes a receptive field profile
Fiv.

o Computing simple cell plane activation: The activa-
tion of simple cells in plane SzlJ is computed in two
steps: First, we sum up the results of convolution of
the activations of the complex cell planes of the previ-
ous layer C’fl_l with corresponding receptive field pro-
ﬁlesFéi",q =1...P_q:

Py
g =S cilg R, (M)
g=1

where ® denotes convolution. Note for the simple
cells of the first layer the previous layer is simply the
input image.

Second, to compute the final (binary) activation of
each cell in Szlp, the “winner takes most” plane-wise
competitive mechanism, introduced in [11], is per-
formed among all cells that are located at a position
(z,y) in the planes Sﬁ,,p =1...P:

0 if M=0 or
S'L(z,y)
l _ <M or
Spl@,y) = gf,?g,y)—%M <0 )
1-m ls
1 else,
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where M = max, Sé(x,y), 0 < 7 < 1is the “com-
petition strength” and 6; is the “activation threshold”
common to all planes in layer . See [11] for a detailed
discussion on this nonlinear step.

o Computing complex cell plane activation: The activa-
tion of a complex cell plane CllJ (which is smaller in
size than the simple cell planes in the same layer) is
directly derived from its corresponding Sfp plane. The
activation of a cell C’IlJ at position (z,y) is computed
by weighted spatial pooling over a neighborhood of
corresponding simple cells:

Cé,(x,y) = Z

(zlyyl)EHl(zzy)

Gl (xlv yl; z, y) * Czl)(xlv yl)v
(3)

where H;(z,y) is a neighborhood function for layer ,
that returns a set of corresponding cell positions in S
within a square of o; X 0;. Gi(z,y'; z,y) is a Gaus-
sian with variance o;, centered at the C* cell position
corresponding to (z,y).

Following [11], we choose for the experiments P; = 4 and
use as fixed values for the first layer receptive field profiles,
i.e. for Fl1 P p = 1...4, first-order even Gabor kernels at
0, 45,90 and 135 degrees.

Using fixed profiles for the first layer is motivated by the
fact that efficient coding on natural image patches yields
Gabor like receptive fields [2, 9, 5]. The use of Gabor ker-
nels can thus be understood as a feature extraction which
is not specialized to a particular domain. Together with
the “winner takes most” nonlinearity, the first layer yields a
“general” segmentation of the input stimulus based on four
dominant edge orientations.

In contrast, the receptive field profiles Fq2 P used on the
second layer are domain specific. They are obtained by an
unsupervised feature coding strategy that analyses the typi-
cal activation patterns of the C? cell planes, while the net-
work is exposed to training images (section 3).

This way, a rejection behavior of *unknown’ parts of a
stimulus can be achieved and utilized for recognition in the
presence of clutter (see section 4).

3 Feature Coding using NMFSC

To obtain a training set for the feature coding procedure
in layer 2, we first apply layer 1 of the network to a set of
training images. Sample patches of size dg2 X dp2 are ex-
tracted at random positions from the activation of C'? cell
planes. Concatenating these sample patches yields vectors
of dimension dg2 * dg2 * P;. The vectors are used as the
columns of a data matrix V' which is subsequently decom-
posed using the NMFSC algorithm proposed in [5].

The algorithm solves the problem V' =~ W H, where W
denotes the feature matrix and H the latent matrix. The
inner dimension of W H is set to P». The solution is ob-
tained by minimizing the MSE between W H and V under
explicit sparseness constraints 0 < Wy < 1 (the sparseness
of columns of W) and 0 < H,; < 1 (the sparseness of rows
of H), and the additional constraints of non-negativity for



matrices W and H. The algorithm also allows to omit W
or H, causing the standard learning rules of [7] to be used
(refer to [5] for details).

After decomposition, each column p of W is normalized
and the values are used to obtain the receptive field profiles
F,f”,forp: 1...Pandg=1...P.

4 Experimental Results

In this section we describe the experimental setup that uti-
lizes the introduced architecture for invariant object recog-
nition by applying a standard Nearest Neighbor Classifica-
tion scheme on C? activations. This allows us to compare
the goodness” of different receptive field profiles in quan-
titative terms of classification performance. We experiment
with two different datasets:

o Dataset 1: This dataset contains 3600 images of size
64 x 64, i.e. 72 views of each of 50 different objects,
taken from the first 50 objects of the COIL-100 image
library [8]. The dataset is divided into disjoint sets
Dyrain (all even numbered views) and Dyeg: (all odd
numbered views). Additionally, we distort the images
in Dyest by random translation of +/- 5 pixels in x- and
y-direction and random scaling of +/- 10%.

e Dataset 2: This dataset is similar to Dataset 1, but
more difficult, in that the test images are addition-
ally distorted by random background-clutter. Clutter
is generated by randomly combining views taken from
the remaining 50 objects from the COIL-100 image li-
brary [8].

4.1 Optimized vs. Random Profiles

In this experiment we consider two settings: In the first,
we generate random P2 profiles, in the second, we ap-
ply the feature coding scheme described in section 3 us-
ing Dyeg (Which is identical for Dataset 1 and Dataset 2),
to obtain P? profiles that are optimized to “fit” the image
domain. (Note, that the sparseness parameters are omitted
here, so standard NMF [7] is applied. The influence of the
sparseness parameters will be analyzed in the second exper-
iment in the next section).

Using these two settings, we vary the number of views
that are used for training from 1 to 36. For each number, the
training images are processed by the network, and for each
example the activation of the complete C? layer is stored
in a database together with the class label information. We
then pass the test images from Dyeg; (Which are different for
Dataset 1 and Dataset 2) through the architecture and per-
form a Nearest Neighbor comparison of the C*? activations
with the database to obtain the classification answers.

The result of this experiment is shown in Fig. 2. Inter-
estingly, for Dataset 1 (Fig. 2, left), the classification rates
for optimized profiles exhibit no significant improvement
over the random profiles. However, for Dataset 2, a signifi-
cant improvement can be observed. From this we conclude
that the advantage of “tuning” the P2 profiles to the image
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domain (here by using standard NMF) is that the overall ro-
bustness to distortion by clutter can be improved to a certain
extend.
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Figure 2: Top: Results of experiment 1 on Dataset 1. No
significant performance improvement of the optimized pro-
files over random profiles can be observed. Bottom: Results
of experiment 1 on Dataset 2. For the cluttered dataset, the
optimized profiles exhibit better performance than random
profiles. In all cases the values represent the average perfor-
mance over 20 repeated runs. To provide an impression of
the “difficulty” of the dataset, in both plots the NNC-curve
denotes the performance of a Nearest Neighbor-Classifier
applied to the unprocessed input images.

4.2 Sparseness Constraints

Based on the results from the first experiment, we now
analyze whether the classification performance can be fur-
ther improved by imposing explicit sparseness constraints
on either the feature matrix W or on the latent matrix H.
This can be done by choosing different values for W and
H,, resp. from the interval [0, 1] (refer to section 3 and [5]
for details).

Since the results of the first experiment show that satura-
tion of the classification performance starts for approx. 15
training views, we will use this fixed number for the follow-
ing experiment.

In order to analyze the effect of imposing a sparseness



constraint on the latent variables (like implicitly done on
sparse coding and ICA), in a first setting we assign an in-
creasing number between 0.025 and 0.975 to H,; with an
increment of 0.025 (the W parameter is omitted). The re-
sults for 20 repeated runs are shown in Fig. 3, top. The
dashed curve shows the average classification performance
and the error-bars represent the standard deviation for the
current amount of sparseness. For comparison, the hori-
zontal dotted line represents the average performance of the
network using standard NMF and 15 views for training (see
experiment 1). The result shows, that no stable significant
improvement can be achieved for this case.

Figure 3, bottom, shows the results of the same exper-
iment for sparseness constraints on the feature matrix. In
this case, the result is more stable and a slight improvement
of the classification rate can be observed for W values be-
tween 0.4 and 0.6.

From the results in this experiment, we conclude that
imposing sparseness constraints does yield a slightly bet-
ter performance in the current application, but that the con-
straints should be imposed on the feature matrix rather than
on the latent variables.

81

o

.
0.4 0.6
Spareness of W

0.8 1

Figure 3: Results of experiment 2: An explicit sparseness
constraint is imposed on the latent variable matrix H (top),
and on the feature matrix W (bottom). See text.
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5 Summary and Conclusion

In this contribution we utilize a recently proposed method
for efficient coding called NMFSC for receptive field pro-
file optimization in a hierarchical model of object recogni-
tion. We found that profiles, which are optimized using this
method exhibit a certain “clutter-rejection” property when
compared to random profiles. Moreover, the application al-
lows us to analyze the effect of imposing different sparse-
ness constraints on the feature matrix or on the latent vari-
ables in quantitative terms of classification performance.
We found that a slightly better classification performance
can be achieved by applying the constraints to the feature
matrix, but this effect can not be observed for the latent
variables.
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