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Abstract

We present an example-based algorithm for detecting

objects in images by integrating component-based clas-

sifiers, which automaticaly select the best local-feature

for each classifier and are combined according to Ad-
aBoost algorithm. The system employs soft-margin

SVM for base learner, which is trained for all local-

features and the optimal feature is selected at each

stage of boosting. The proposed method is applied to

the MIT CBCL pedestrian image database, and shows

fairly good result with 10 local-features such as full im-

age, upper half, lower half, right half, left half, head,

right arm, left arm, legs, and body center.

1 Introduction

In this paper, we present an example-based algo-
rithm for detecting objects in images by integrating
component-based classifiers, which automatically se-
lect the best local-feature for each classifier and are
combined according to A daBoost[1] algorithm. Our
method can be applied to any object composed of dis-
tinct identifiable parts that are arranged in a well-
defined configuration, such as cars and faces. However
we focus on the pedestrian detection in images, which
could be used in driver assistance systems and video
surveillance systems. P edestrian (people) detection is
more challenging than detecting other objects such as
cars and faces, since people tak e a variety of shapes and
it is nontrivial to define a single model that captures
all of these possibilities.

Gavrila[3] employed hierarchical template match-
ing to find pedestrian candidates from incoming im-
ages. The method previously provide multiple tem-
plates which are outline egde image of typical pedestri-
ans and dissimilarity (or similarity) between the edge
feature of incoming images are measured by chamfer
distance. In this method, the shape variety of the
pedestrians are accommodated with variety of tem-
plates, which would bound the system performance.

Mohan et. al[2] applied an Adaptive Combination of

classifiers (ACC) to pedestrian detection. Their system
consists of two stage hierarchical classifiers. The first
stage is structured with four distinct example-based
classifiers, which separately trained to detect different
component of pedestrians, such as the head, legs, right
arm, and left arm. The second stage has an example
based classifier which combines the result of the com-
ponent detectors in first stage to classify a pattern as
either a “person” or a “non-person”. Support Vector
Machine (SVM)[5, 6, 7] is employed for each classifier.
Their result indicates that combination of component
based detectors perform better than a full-body person
detector. In their system, the components are deter-
mined in advance and they are not exactly optimal for
classification of the examples.

Viola et. al[4] presented a pedestrian detection sys-
tem which integrates image intensity information with
motion information. Their detection algorithm scans
a detector over two consecutive frames of video se-
quence, and the detector trained using A daBoost to
tak e advantage of both motion and appearance infor-
mation. They achieved high detection speed (about
four frames/second) and very low false positive rate,
with combining two different modality of information
to one detector.

Though Viola showed the advantage of integrating
motion information, it is still difficult to apply their al-
gorithm to on-board pedestrian detection system, since
canceling a movement of the camera is difficult only
from visual information. Therefore, we focused on
pedestrian detection from static images to realize our
example-based object detection method. W e employ
soft-margin SVM for base learners of A daBoost, and
the best local-feature is automatically selected at each
stage of boosting. Our preliminary result shows that
proposed method achieves fairly good classification ra-
tio.

W e describe our object detection method in next sec-
tion, and the preliminary result is introduced in follow-
ing section. In final section, we give some theoretical
consideration on our result.
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2 System Configuration

2.1 Algorithm

Fig. 1 shows the overall algorithm of our pedestrian de-
tection system, which is based on AdaBoost and Local-
Feature selection. We define a local-feature as a por-
tion of an input vector, usualy extracted with some
meanings such as sub-region of an image (fig. 2). The
contribution of local-feature selection is performed as
selecting the best local-feature at each boosting step.
At ith boosting step, the ith base learner is trained
under the sample weights determined by i−1th base
learner for all the local features in Local-Feature pool,
and selects the best local-feature (which has the lowest
error ratio) for ith base learner. The sample weights for
next boosting step and significance of the base learner
is computed according to the error ratio.

We employ MIT CBCL database for sample data,
which contains 926 pedestrian images with 128×64
pixel, and we collected 2,000 random non-pedestrian
images. We reduced the resolution of all the samples to
64×32 before we applied them to our system. We used
the intensity of the pixels as an input vector, and the
local-features are extracted as adequate sub-regions of
the input images. We took ten local features for our
evaluation; such as whole pedestrian body, upper half,
lower half, left half, right half, head, left arm, right
arm, legs, and center of body. However, the number
and the size of local-features can arbitrary be deter-
mined. Fig. 2 shows the original images and local
features. We selected 700 pedestrian images and 700
non-pedestrian images for training, and 200 pedestrian
images and 200 non-pedestrian images for testing the
generalization error.

2.2 Boosting Soft-Margin SVM

We employed a soft-margin SVM for a base learner.
We first describe a SVM briefly and a description on
soft-margin SVM is followed.

When the classification function is given as

y = sign(wT
x − h) (1)

where x stands for an input vector, w stands for a
weight vector of the input, and h stands for a thresh-
old. Function sign(u) is a sign function, which ouputs 1
when u > 0 and outputs -1 when u ≤ 0. A SVM deter-
mines a separating hyperplane with maximal margin
(distance), which is the distance between the separat-
ing hyperplane and a nearest sample. If the hyperplane
is determined, there exists a parameter to satisfy

ti(w
T
xi) ≥ 1, i = 1, . . . , N . (2)

This means that the samples are separated by two hy-
perplane H1: w

T
xi − h = 1 and H2: w

T
xi − h = −1,

and no samples exist between them. The distance be-
tween separating hyperplane and H1 (or H2) is de-
fined as 1/‖w‖. Determining the parameters w and

1. Let N be the number of samples, M be the num-
ber of boosting steps, L be the number of local-
features in Local-Feature pool.

2. Generate Local-Feature pool from input samples
x, such as
x → x

1, x
2, . . . , x

L.

3. Initialize the observ ation w eights wi = 1/N ,
i = 1, 2, . . . , N .

4. For m = 1, to M :

(a) For l = 1 to L

i. Fit a classifier Gl
m(xl) to the train-

ing samples of local-feature xl that are
randomly selected depending on the
w eights wi from all the training sam-
ples

ii. Compute

errl
m =

∑
N

i−1
wiI(yi 6=Gm(xl

i
))

∑
N

i=1
Wi

.

(b) set errm with the smallest errl
m,

l = 1, 2, . . . , L.

(c) set Gm(x) ← Gl
m(xl) with l in abov e step.

(d) compute
αm = log((1 − errm)/errm).

(e) set wi ← wi · exp[αm · I(yi 6= Gm(xi))],
i = 1, 2, . . . , N .

5. Output G(x) = sign[
∑

M

m=1
αmGm(x)].

Figure 1: AdaBoost with Local-Feature selection

Figure 2: Sample Images and Local Features
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h which give maximal margin is defined as an opti-
mization problem of the following evaluation function

L(w) =
1

2
‖w‖2 (3)

under a constraint

ti(w
T xi − h) ≥ 1, i = 1, . . . , N (4)

where ti stands for the correct class label for an input
vector xi.

A soft-margin SVM allows some training samples to
violate the hyperplanes H1 and H2. When a distance
from the H1 (or H2) is defined as ξi/‖w‖ for the vio-
lating samples, the sum

N
∑

i=1

ξi

‖w‖
(5)

should be minimized. Therefore, a soft-margin SVM
is defined as an optimization problem of the following
evaluation function

L(w, ξ) =
1

2
‖w‖2 + C

N
∑

i=1

ξi (6)

under a constraint

ξi ≥ 0, ti(w
T xi − h) ≥ 1 − ξi, i = 1, . . . , N (7)

where C stands for a cost parameter for violating hy-
perplane H1 (or H2). Solving this problem with an
optimal solution α∗, the classification function can be
redefined as

y = sign(w∗T x − h∗)

= sign(
∑

i∈S

α∗

i tix
T

i x − h∗). (8)

The samples are grouped with α∗

i
; a sample xi is classi-

fied correctly when α∗

i
= 0, when 0 < α∗

i
< C the sam-

ple xi is also classfied correctly and it locates on the
hyperplane H1 (or H2) as a support-vector, if α∗

i
= C

the sample xi becomes a support-vector but it locates
between H1 and H2 with ξ 6= 0.

The Kernel-Trick, which drastically improved the
performance of SVM, can also be applied to soft-
margin SVM. In Kernel-Trick, the input vectors are
transformed by non-linear projection φ(x) and linearly
classified in the projected space. Since SVM depends
on the product of two input vectors, the product of the
input vectors in projected space can be used instead of
computing the non-linear projection of the each input
vector, such as

φ(x1)
T φ(x2) = K(x1, x2). (9)

K is called a Kernel F unction and usualy selected a
simple function, Gaussian function

K(x1, x2) = exp

(

−||x1 − x2||
2

2σ2

)

(10)

Table 1: The Error Ratio Comparison

Error Ratio
Gavrila 10-40%∗

Mohan 1-2%
Viola 10%
Our Result 2-3%

* For first stage.

for instance. The classification function can be rede-
fined by replacing input vectors with kernel functions,
as follows

y = sign(w∗T φ(x) − h∗)

= sign(
∑

i∈S

α∗

i tiφ(xi)
T φ(x) − h∗)

= sign(
∑

i∈S

α∗

i tiK(xi, x) − h∗). (11)

Introducing cost parameter C, we could have two
choice to realize the sample weighing in AdaBoost, one
is building SVM with defining a cost parameter as a
weight of each sample, the other is re-sampling accord-
ing to the sample weights. Schwenk et. al[8] showed
that defining a pseudo-loss function and re-sampling
have similar effect in AdaBoost, we therefore took re-
sampling so that we could use LIBSVM[9] for our eval-
uation. 1,000 images are re-sampled from 1,400 images
in training samples.

3 Results

As described in previous section, the base learners are
trained for 1,000 images re-sampled from 1,400 training
images, and tested by 400 images, while varying the
soft-margin cost parameter.

Fig. 3 shows the error ratio against the number of
boosting steps with cost parameter C for 0.1, 0.7, and
100. All ten local features are almost evenly selected
at each boosting steps. The test error is higher than
11% with C=0.1 and 7% with C=100 without boost-
ing. It continuously decreases according to the boost-
ing steps, even after the training error converges to
zero for C=0.7 and C=100. After 100 boosting steps,
test error reaches to 4% with C=0.7, 4.5% with C=100,
and 5.25% with C=0.1. This result indicates that the
boosting improves the generalization error and does
not behave as over-training.

Table 1 shows the comparison of error ratio against
the former researches. Our result achieved better er-
ror ratio against Gavrila and Viola, while little bit
worse than Mohan. Considering the difference of non-
pedestrian data, we would conclude that our result
showed the almost same performance as Mohan, P a-
pageorgiou and P oggio.

Fig. 4 shows the test error against cost parameter C
after 50 boosting steps. The test error records the min-
imal value of 4% at c=0.7. This result indicates that
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Figure 3: Error Ratio against Number of Boosting

soft-margin SVM advantageous to usual hard-margin
(or firm-margin) SVM for boosting, however there ex-
ists the optimal value for cost parameter C.

4 Discussion

Schwenk empirically showed that boosting does not af-
fect the over-training in [8], and Schapire showed the
margin of each base learner bounds the final boosted
test error in [10]. Our result follows their insight, and
can be reconsidered with Schapire’s idea of the margin
of base learners.

SVM maximizes the distance between H1 and H2,
as described in section 2. Introducing soft-margin, the
distance can be increased, that means the first term of
equation 6 can be decreased. However, if soft-margin
allows too many samples to violate H1 (or H2), the sec-
ond term of equation 6 increases. Therefore, the cost
parameter for soft-margin should be set some optimal
value to minimize the whole equation 6.

5 Conclusion and F uture W ork

We presented the object detection method by boost-
ing soft-margin SVM with local-feature selection. The
experimental result showed fairly good generalization
error ratio of 4%. In this paper, we focused on pedes-
trian detection using only pixel intensity as a feature,
although the other features, such as edge, sobel filter-
ing or chamfer distance, are thought to improve the
classification performance. These different kind of fea-
tures can easily be integrated in our local-feature se-
lection phase, thus we are planning to examine the
integration of multiple features in our system.

The result also gave us an insight on the optimal
soft-margin cost parameter in SVM classifier. We will
have some more consideration on this subject.
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