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Abstract

Road traffic incidents analysis has shown that a third of 
them occurs without any conflict which indicates problems 
with road following. In this paper a driving safety assis-
tance system is introduced, whose aim is to prevent the 
driver drifting off or running off the road. The road fol-
lowing system is based on a frontal on-board monocular 
camera. In order to get a high degree of reliability and 
robustness, an original combination of three different al-
gorithms is performed. Low level results from the first two 
algorithms are used to compute a reliability indicator and 
to update a high level model through the third algorithm 
using Kalman filtering. Searching areas of the roadsides 
for the next image are also updated. Results obtained in 
the context of the ARCOS1 French project show the reli-
ability, the robustness and the precision of this original 
association of three different algorithms in various situa-
tions, including roads with high curvature. 

1 Introduction 

More than 30% of road accidents are caused by road 
following issues. Two criteria can be enounced to qualify 
the driving consistency depending on the road configura-
tion. The first one is the distance of the vehicle from its 
lane border and holds on straight lines. The second one is 
the geometric characteristics of the road related to the dy-
namic of the vehicle. It becomes preponderant in curves 
and supports to the need of an anticipated detection in 
front of the vehicle. 

Based on those criteria, driving safety assistance con-
sists in warning, suggesting or correcting the driver if he 
has not manifested the aim of a voluntary lane change or if 
his speed is not adapted with the road configuration. All 
these assistance modes rely on a system that is able to 
localize the vehicle with respect to the road and to model 
the shape of the road itself. This task is usually done 
through image processing using a frontal camera. 

To be accepted by drivers, such a system must have a 
high degree of robustness and reliability. It must be able to 
deal with various meteorological conditions (day, night, 
sunny, rainy), various road profiles (straight lines, longi-
tudinal or lateral curvatures), different lines configurations 
(continuous, dashed, way out) and also with occluded or 
degraded road markings. 

Moreover the system must be able to know its operating 
state. This means that it has to automatically switch off 
when nothing is seen or when the detection is not enough 
confident. This is a point of great importance in any assis-
tance system. 

Vision systems aimed at detecting the road have been 
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subjected to investigations for many years [5]. Many dif-
ferent solutions were proposed in literature: 

In [11] the road is assumed to be flat and straight. This 
model is the simplest one. But this approach is very re-
strictive and one can not use it on curved roads. 
Broggi and al. [3] proposed the so-called Inverse Per-
spective Mapping transform to remove the perspective 
effect. The lane markings are then quasi-vertical white 
lines and are extracted assuming a constant width. This 
method is efficient only in short distance and in a weak 
curvature road. 
Dean Pomerleau [9] uses a similar system and com-
putes histograms to improve robustness. 
Tarel and al. [6] proposed a curve extractor from a set 
of line segments grouped in a decreasing order of their 
length. This method is robust to bad lighting conditions 
but is quite time consuming. 
Algorithmic redundancy is proposed in [8] through the 
use of two low level algorithms so to obtain a reliability 
indicator. However this method does not take into ac-
count a high level road model, which can lead to 
detection failures especially in the case of high curva-
ture roads. Moreover the horizon line is supposed to be 
constant.
In [4] the yaw, roll and pitch are estimated but the road 
width is still assumed constant. However in practice, 
the road width generally varies. 
In [1] an efficient model-driven approach taking the 
vehicle dynamics into account is proposed. However 
the feature extraction process is rough, the algorithm is 
recursive and can hence be computational exponential, 
and the system can hardly provide any reliability indi-
cator about its operating state. 

It seems to us that combining various systems could be 
of great interest. That is why we propose the parallel use 
of the model-driven approach proposed in [1] and the low 
level process introduced in [8], in order to take advantage 
of each system. The resulting system is aimed at manag-
ing any kind of roads and situations, and providing a 
reliability indicator about its operating state. Principles of 
the three algorithms will be reminded and the original way 
in which they are combined will be described. Eventually 
results will be presented and show that the new detector is 
efficient in any situation. 
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Figure 1. System overview

2 Algorithms Description 

First an overview of low level algorithms is presented.
More details can be found in [8]. Then their combination
is described. Eventually the way in which coherence of
data and vehicle localization is ensured [1] is explained.
Focus is done on the link between low level and high level
algorithms.

2.1 Low level detection 

2.1.1 Lateral consistent detection

The algorithm used for the lateral consistent detection
consists in a simple low-level processing. It processes
each scanning line independently. This algorithm can be
divided into three main stages: (1) features extraction in
the image that are likely to belong to a road marking; (2)
matching of primitives between the left and right lane bor-
ders; and (3), tracking over time. 

The feature extraction is aimed at obtaining the maxi-
mum number of features present on the lane-markings
while largely reducing the number of outliers. With the
frontal camera, the observed lane-marking width de-
creases linearly and reaches zero at the horizon line. Thus,
the extractor computes intensity gradients of a value
higher than a threshold 0 and then searches for a pair of
positive and negative gradients within a range  that
depends on the current line of analysis, because of the
perspective projection on the camera. Then the center of 
the pair is selected as feature.

S

,1 2S S

The matching process selects, for each line of analysis,

the couple of primitives that is more likely to describe the
left and right borders; the chief criterion is the horizontal
distance of the left and right features, which must be as 
close as possible to the width of the lane.

The tracking step computes the new positions of the left
and right borders, and can manage non-continuous mark-
ings. Figure 1 (a) shows the result of this algorithm.

2.1.2 Longitudinal consistent detection

The second low-level algorithm is divided in two parts:
a lane marking features extractor and a robust road shape
estimation based on M-estimators.

The lane marking features extractor is very similar to
the one used for the lateral consistent detector presented in
the previous section.

In the robust road shape estimation, we consider that
the extracted features are noisy measurements of an un-
derlying curve explicitly described by:

1 ( )0 1
a Tu a a v X v

v vh
A

where is the parameters vector to be esti-

mated, and

( , , )1 0 1
TA a a a

( ) (1/( ),1, )TX v v v vh  is the hyperbolic

polynomial basis. The road shape estimation is based on 

the M-estimators theory. The use of the M-estimators

leads to the well-known weighted least square algorithm

that provides robust estimations [10]. Figure 1 (b) shows

the result of this algorithm.

2.1.3Combining low level algorithms 

Each low level algorithm has provided an output. For
each line of analysis , the evaluated positions of the left i
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and right borders are available from both algorithms. If 
these positions, from each algorithm, are close to each 
other (horizontal distance less than a few pixels), the de-
tection on the line is assumed to be reliable and the
average position between the two algorithms is to be taken
into account for the next process. Otherwise the line  is 
rejected. The confidence value indicating the operating
state of the system is given by the percentage of lines of
analysis where the detection is assumed to be reliable for
left and right borders and is summed up for the global
reliability indicator (cf. fig. 1 (c)). 

i

i

2.2 Data coherence, vehicle localization

This section describes the method allowing to improve
coherence between the low level detection (image data,
section 2.1) and vehicle 3D localization (section 2.3) and 
to predict regions of interest used by the low level detec-
tion (section 2.4). Coherence will be obtained by a 
statically learning [1] (training stage) and imposes to inte-
grate image data and 3D parameters in a single one state
vector ( , )X X Xd l , vector X and training stage are de-
scribed in next paragraphs.

3D localization vector X l : Road geometry and vehicle
position are described by the state Vector

h l and its covariance matrix Xl
C  rep-

resenting errors on 3D model. is the lateral position of
the vehicle on the roadway,  the road width,

( , , , , , )0
tX L X C Cl

0X

L  the
vehicle steer angle, the camera inclination angle
(pitch), the horizontal road curvature,  the evolu-
tion of the horizontal road curvature.

Ch Cl

Image data X d : Image data are represented by a vector 
( , ..., , , ..., )

1 1
X u u u ud l nl r and its covariance matrix Xd

.
Where and

1r nr represent the image ab-
scissas of the left and right road sides for different image
ordinates

nr
( , ..., )u u

C

( ,..., )1u ul nl

vi ( 1, )i n fixed once and for all. The matrix

Xd
defines the variations of coordinates  and 

(see figure 2).
C uil uir

Figure 2. Image data

Training stage: This stage allows to compute the de-
pendencies between the 3D parameters and image data
while knowing the distribution probability of the 3D lo-
calization parameters defined by ( (0), (0))N X l Xl

 (vector C

(0)X l represents the mean value of 3D parameters and
covariance matrix 

l
their possible variations).

These dependencies can be described by the distribution
probability

(0)
X

C

( (0), (0))N X XC and will be used as a reference
for 3D estimation and tracking stage (sections 2.3 and
2.4).

2.3 Parameters estimation 

Once an estimation of the roadsides location for a given
image is achieved (see 2.1.3), low level detection pro-
vides a vector

k

( )X k kd with its covariance matrix
( )k kX d .C ( )X k kd is chosen as the average points from 

low level algorithms that have been classified as reliable
and ( )k kX d is made from the distance between reliable
points. This way robustness of the inputs of the model
driven algorithm are enforced and the global efficiency of
the system is increased.

C

Then, in order to estimate all parameters for the given
image, we update the vector model ( )X k k in the follow-
ing way:

( ) (0) ( ) (0)

( ) (0) (0)

X k k X X k k Xd dd

k kX X d X

K H

C C KH C

1
(0) (0) ( )

T T k kd X Xd X d dd
K C H H C H C

is such as d
H X X wd dd

H with TE w wd Xd d
C

2.4 Tracking stage 

Before new roadsides recognition, an a priori knowl-
edge of the position of the image data is needed to drive
the search for interest points. This stage can be computed
in two steps.

Prediction of the 3D localization: Between two images,
it is possible to know the behavior of the vehicle attitude
(position 0  and orientationX ) on the road taking into
account data provided by proprioceptive sensors embed-
ded in the vehicle. So an estimation of the 3D localization
at image 1k can be computed by the following relation

( 1 ) ( ( ), , )TX k k f X k k dl l ,  andd are respectively 
odometer and steer angle data.

Initialization of the low level detection: In order to
compute the new regions of interest for low level detec-
tion, the vector ( 1 )X k kd must be estimated. Then state
vector ( )X k k is updated taking into account ( 1 )X k kl

and the covariance matrix ( 1 )k k
Xl

C :

( 1 ) (0) ( 1 ) (0)

( 1 ) (0) (0)

X k k X X k k Xl ll

k kX X l X

K H

C C KH C

1
(0) (0) ( 1 )

T T k kl X Xl X l ll
K C H H C H C

is such as l
H X X wl ll

H with TE w w
Xll l

C

Then, the new regions of interest for image 1k  are de-
fined by ( 1 )X k kd  and ( 1 )k k

Xd
, contained in the

state vector 
C

( 1 )X k k and its covariance matrix
( 1 )k k

X
Moreover, the estimated pitch

.C

is used to update in a 
dynamic way the horizon line for low level algorithms (cf. 
fig. 1). This significantly increases the feature extractions
steps (lane markings width and road width).

3 Results

Results are part of the ARCOS project. The camera
used had a focal distance f = 6 mm and was placed
on-board near the rearview mirror. Images were 1/4 PAL,
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384 288 pixels. 150 horizontal scanning lines were chosen
in the image corresponding to world lines between 3 m 
and 45 m from the vehicle by step of 30 cm and were used
for low level detection. The model vector was composed
of 18+6 parameters corresponding to 9 analysis zones for
both left and right line. Initial values for the training stage
were chosen in order to be able to deal with every type of 
road, including high curvature  (cf. tab. 1).Ch

Table 1. Initial values for the training stage.

L (m) 0X (m) (°) (°) Ch (m-1) Cl (m-1)

3.6 1.8 0.0 6.5 0.0 0.0

0.4 2.0 8.0 4.0 0.033 0.001

Tests have demonstrated the robustness of the algo-
rithm. More than 300 km have been covered to date.
Figure 3 represents results on different difficult situations
the system has successfully dealt width. In figures 3(a)
and 3(b) it manages large occlusions. The reader can no-
tice the low right reliability value (right cursor in white on
the left graduation). On figures 3(c) and 3(d) the system is 
switching off as soon as there is no more road markings.
In 3(e) a large curve (

h
) is followed by the

system. Then in 3(f) it can be seen that the system handle
well the so usual confusion with safety barrier. In 3(g) the
system deals with a zebra road mark. In 3(h) the systems
operates at night.

1
0.025C m

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Example of results (see in text for detail)

Robustness of the system has been evaluated under dif-
ferent scenarios (day, night, sunny, rainy, highway, curved

road, occlusions, imperfect road markings, etc.). Videos of
various situations can be downloaded at:
ftp://ftp.lcpc.fr/incoming/MVA/. The system has shown a
really good behavior under all the tested situations. The
system never returns erroneous results: it switch off when
there is no correct result to return. The rest of the time the
system operates well dealing with a large number of com-
plex situations.

4 Conclusion

In this paper we introduced a lane detection system
based on an on-board frontal camera for driving safety
assistance. The originality relies on the parallel use of
three different algorithms. The best of each one is devel-
oped whereas gaps are filled by the others. It results in a 
very robust system that can deal with almost all situations.
A reliability indicator is provided to avoid reporting false 
detection which is crucial for the driver to be confident in
the system and to be used safely for vehicle control. Re-
sults in real situations have demonstrated the robustness
and efficiency of the system.
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