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Abstract

In this paper we present an application of model based fo-
cused vision in order to recognize and localize on road vehi-
cles rear part. A good recognition rate and vehicle distance
estimations were observed. Some results are presented here.

1 Introduction

In recent years, vehicular safety has taken special
attention in the intelligent transportation comunity. To
tackle this problem, driver’s assistance systems have been
developed in order to reduce the number of accidents. For
such assistance systems, differents devices for environe-
ment perception are used. In particular, object detection
is important for obstacle avoidance. For the detection
and localization tasks, we need to recognize or to identify
the object we want to detect. Our objective is, once the
object is recognized, to find the 3D parameters of obstacles
observed by road scene images. In the next section we will
describe the recognition method and the principle we use
to localize the object in the 3D world.

2 Object Recognition

As described in [3], this recognition method is based on
a recursive recognition process driven by an object’s proba-
bilistic model, which takes into account the relationship be-
tween the object’s features. A detailed description is given
next.

2.1 Model definition

For object representation we can find several approaches
in the literature like geometric (line segments, corners,
wavelets descriptors, etc), functional-based, multi-scale,
graph representations, etc. The proposed methodology al-
lows us to build a model by using the functional approach
for shape representation as shown in [1] for the case of road
recognition. Notice we can describe an object by using
other kind of representations like geometric and multi-scale
approaches, resulting in an hybrid representation.
This process uses both structural and appeareance based ap-
proaches taking advantage of each one. The model defini-
tion is maybe one of the most crucial points for the recog-
nition process. For this method, the model is constituted of
N object features supposed to have a gaussian pdf. Each
feature Fi is represented by a vector pi = (oi1, ..., oiMi

)t

with Mi parameters oij which can be the coordinates of the
feature, color/gray level regions, a spatial localization of a
tuned-filter response, etc. This modeling allows to work in

the general feature space and not only in a geometric space.
The vectors pi’s are grouped into a vector x=(p

1

t, ..., pN
t)t

which is considered as a multidimensional r.v. with normal
probability density function and covariance matrix Cx. The
couple (x, Cx) constitutes the model of the object.

2.2 Learning stage

Learning phase is a simple off-line training procedure.
Its goal is to give an initial value of the model with the ob-
jective of limiting the search of features in the feature space.
Mainly, our task is to find the vector x̄ which is the mean
value of the object features and its covariance matrix Cx
which has the relational knowledge between features. Both
can be calculated by simple statistics.
In order to deal with the problem of scale variant objects,
a perspective projection of its geometrical parts could be
done. This will be explained in detail in the next section.

2.3 Recognition process

The two main characteristics of the algorithm is (1) the
recognition process is achieved in the feature space, (2) it
is guided by the model in order to focus a particular sub-
space in the overall feature space. We are therefore able
to deal with a more complete representation of an object
avoiding problems when working with large feature spaces
and combinatorial problems for feature correspondance.
For a given feature Fi, we define

• a vector pi and its covariance matrix Cpi

• a detection function fi(pi, Cpi) associated to feature
Fi able to provide an estimation p̂i of pi.

• a cost function χi(x, Cx)

2.4 Detection and cost functions

The detection function associated to each feature is a low
level image processing operator and it is strongly dependant
on application and on the nature of the feature. We have to
remark that this detection functions are parametrable func-
tions. We mean that the function receives as parameters the
model (p̄i, Cpi), of a current recognition state, in order to
focus the detection. The task of these detection functions is
to extract an estimation of the parameters oij in an specific
region of interest (ROI), centered on p̄i and taking into ac-
count the permissible variations given by Cpi. We have to
remark that this ROI is defined in the feature space.
The cost function χi(x, Cx) represents the search cost of the
feature Fi on the recognition process.
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Figure 1: Simplified organization chart of the recognition
process

2.5 Algorithm’s Evolution

Processing all this information could be extremely time
consuming if we use a typical rigid model matching algo-
rithm. In order to overcome with this problem, a recur-
sive model-driven procedure is used. Then, the algorithm
processes only the information the model needs (a special
feature in a certain region in the image for a given resolu-
tion, for example). After a successful detection, the recog-
nition process updates the statistical model, by means of a
Kalman filter, in order to reduce the permissible variations
of the resulting features. The process starts from an initial
value (x(0), Cx(0)) corresponding to the value given from
the learning stage. Then for a particular level or fecogni-
tion k, the process detects the feature Fi having the smallest
cost calculated with the cost function χi. The algorithm is
stopped when a certain criterion is reached. Figure 1 shows
the simplified procedure chart of the algorithm.

2.6 Recognizing objects at different scales

In order to recognize objects of different sizes in an
image, a variation of typical approaches was developped.
In the bibliography we can find several approaches dealing
with this problem [4] [5], more often, a multi-resolution
analysis is used. When working with rigid models, a very
fine search over scale must be done, step of 1/4 is typical
for good results (typical 11 scales to analyze) [5]. The
inconvenient is that we need to analyze several scales
to detect our object and consequently a high processing
time is involved. In order to tackle this problem, we have
used the typical 2n resolution analysis. The fact that we
did the learning stage using the perspective projection
transformation, as a result we have a deformable model
and allows us to deal with small variations in scale. Taking
advantage of this permissible variations, we only need to
do the search in four scales.

3 Application: On road vehicle Recognition
and Localization

We have defined a vehicle’s model as a set of 18 fea-
tures Fi corresponding to the contour vehicle’s rear part as
shown in figure 2. All the features are composed by a three
parameters vector p

i
= (ui, vi, ζi), where ui and vi are the

coordinates of the feature’s center relative to the image co-
ordinate system and ζi is the direction of the edge informa-
tion which will be explained later. In order to built a scale
invariant model, a perspective projection of the 3D coordi-
nates points of the vehicle was made.

Figure 2: 18 features Fi’s conforming the vehicle’s model

3.1 Object modeling in the 3D world

Let us define the three coordinates systems taken into
account for this application:

• World coordinate system with axis Xw, Yw, Zw

• Object coordinate system with axis Uo,Vo,Wo and ro-
tations angles φ, θ.

• Camera coordinate system with axis Uc,Vc,Wc and ro-
tations angles ψ, α

Figure 3: World, object and camera coordinates systems

Our objective is to represent the points of the object into
the world coordinate system, and then to represent the 3D
points of the world into the image plane by means of per-
spective projection.
Let us define p

w
, p

o
and p

c
points belonging to the world,

object and camera coordinates system respectively. The
representation of a 3D point of the object to the world coor-
dinate system is carried out by the following rigid transfor-
mation

p
w

= [RφRθp
o
] + to = [Xw, Yw, Zw]t, (1)
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po = [Uo, Vo, Wo]
t and to = [Xo, Yo, 0]t

Where R and t correspond to a rotation matrix and transla-
tion vector respectively.
Thereafter, we have to represent a 3D point of the world
into the camera coordinate system by means of

pc = RψRα[pw − tc] = [Uc, Vc, Wc]
t (2)

with,

pw = [Xw, Yw, Zw]t, tc = [Xc, 0, Zc]
t

Object representation into the image plane In order to
represent the 3D object into the image plane, we use the
well known equations for perspective projection.

3.2 Learning Phase

Since we have a normalized vehicle’s image database,
we are able to extract directly from images the values of Uo

and Wo. The 18 points were selected by hand and extracted
from a set of 150 vehicle’s images of different appeareance.
The ζi parameter is calculated making an accumulation his-
togram of the energy, of the phase component, at the output
of a quaternion Gabor filter mask [2]. For each point Uoi

and Woi 3 filter masks are applied, each one corresponding
to horizontal, vertical and diagonal orientations. In order to
learn the local appearance of the object, SVM’s classifiers
are used taking information at differents scales of analysis.
At this point, the mean vector x̄ and the covariance matrix
Cx can be calculated.
Because we need the couple mi = (ui, vi)

t =
f(Uoi, Woi, X0, α, ψ, X1, Y1, Z1, θ, φ). The covariance
matrix can be calculated as:

Cmi = Jf ClJf
t (3)

where Jf is the Jacobian defined as:

Jf =


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






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with Cl = diag(σ2

X0
σ2

α · · ·σ2

φ) because of the terms are
un-correlated, where diag is a diagonal matrix. Notice that
pi = (mi, ζi) and x = (pt

1
, ..., pt

N )t. Having calculated the
mean value x̄ and its covariance matrix Cx of the model,
we are able to perform the search process for features in the
recognition task.

3.3 Detection and cost functions

The detection functions fi(pi, Cpi) are SVM’s based de-
tectors. The region in the image to be scanned and the
orientations of the low level image operators are given by
(pi, Cpi). An estimated value p̂i is returned . The cost
functions are defined in function of the sliding window’s
size and in the scale of analysis. For this application, it is
more expensive to search a small feature in a high resolution
image than a low resolution overall appeareance feature of
the vehicle. Figure 4 shows different initial models when
searching vehicles over scale.

Figure 4: Vehicle recognition over scale.

3.4 Vehicle Localization

For the localization purpose, we can deduce the 3D pa-
rameters by means of a Kalman filter by using the following
equations:

• A measurement equation given by
x̂ = fo(xl)

≈ Hxl with H = ∂fo

∂xl

|xl=xlo

• and an evolution equation given by
xl(k + 1) = fe(xl, u)

The filter is fed with x(k) and C(k).
Having the estimation of x̂ we can deduce xl in order to
predict xl(k + 1).

3.5 Vehicle Tracking

The tracking phase is a very simple procedure which
consists of keeping the model of the last state, after a suc-
cessful recognition, (x(p), Cx(p)) and to re-define the new
permissible variations of the object. In the case of vehicle
tracking, the new permissible variations could be given by
the possible lateral position of the vehicle and the possible
variation in depth. For the next image, the initial model cor-
responds to (x(p), Cx(p)) and the process is repeated until
the recognition criterion is achieved. We have to note that
the possible variations of the model are strongly reduced in
relation with the initial model (x(0), Cx(0)) and thus the
recognition process is faster. In our tests, the recognition
process time in the tracking stage is between 80 − 150ms
running the program under Matlab. A velocity vector could
be taken into account in order to better predict the trajectory
of the vehicle.

Figure 5: Approximated distances of vehicle.
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Figure 6: Vehicle’s lateral position.

3.6 Improving object recognition by using
LASER telemeter data

Having devices that helps to localize objects, we can
take advantage of that in order to accelerate the recogni-
tion process. For example, without localization information
the recognition process must do a search in the image over
scale. If we know the 3D localization of the object, it’s easy
to feed this information, in a natural way, into the system
and to focus the attention into a particular part of the image
and also in a specific level of resolution. As a result, a faster
recognition time is obtained.

4 Results

Figure 7 shows examples of vehicle recognition and the
distances estimated by the present algorithm. The algorithm
was tested in a video sequence with more than 500 images.
A good recognition rate of 96% was observed. In figure 6
we observe the evolution of the distance aproximated by the
algorithm in a video sequence, and the estimated lateral po-
sition of the vehicle in figure 5. Due to model defects, many
different configurations (mainly in size) can be adapted to
a same size vehicle. Obviously this results an error in the
estimated distance.

5 Conclusions and Future Work

An image based recognition and localization method was
presented. The results show a good recognition rate in the
recognition stage and a good approximation of the object’s
distance in relation with LASER telemeter information. Es-
timation errors in our image based approach are due mainly
in the fact that the recognition system mistakes the recog-
nition due to the simplicity of the choosen vehicle’s model.
Another problem is that, small errors in the estimated model
are translated into large variations in distance.
In the future, an integration of the lidar to our system is
necessarily in order to focalize it to a specific direction de-
pending on model’s needs. A cost function must be defined
in order to calculate the probability of good and bad detec-
tion of each primitive. Thereafter, an automatic and quasi-
optimal primitive selection could be done in order to make
the algorithm converges more fast.
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