MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

9-5

Skeletons and Asynchronous RPC for Embedded Data- and Task Parallel Image
Processing

Wouter Caarls, Pieter Jonker
Delft University of Technology
Quantitative Imaging Group
Lorentzweg 1, Delft, The Netherlands
{w.caarls, p.p.jonker } @tnw.tudelft.nl

Abstract

Developing embedded parallel image processing appli-
cations is usually a very hardware-dependent process, re-
quiring deep knowledge of the processors used. Further-
more, if the chosen hardware does not meet the require-
ments, the application must be rewritten for a new platform.
We wish to avoid these problems by encapsulating the par-
allelism.

We have proposed the use of algorithmic skeletons [3]
to express the data parallelism inherent to low-level image
processing. However, since different operations run best on
different kinds of processors, we need to exploit task paral-
lelism as well.

This paper describes our asynchronous remote proce-
dure call (RPC) system, optimized for low-memory and
sparsely connected systems such as smart cameras. It uses
a futures/10]-like model to present a normal imperative C-
interface to the user in which the skeleton calls are implic-
itly parallelized and pipelined.

1 Introduction

As processors are becoming faster, smaller, cheaper, and
more efficient, new opportunities arise to integrate them
into a wide range of devices. However, since there are so
many different applications, there is no single processor that
meets all the requirements of every one. The SMARTCAM
[6] project investigates how an application-specific proces-
sor can be generated for the specific field of intelligent cam-
eras, using design space exploration.

The processing done on an intelligent camera has very
specific characteristics. On the one hand, low-level image
processing operations such as interpolation, segmentation
and edge enhancement are local, regular, and require vast
amounts of bandwidth. On the other hand, high-level op-
erations like classification, path planning, and control may
be irregular while typically consuming less bandwidth. The
architecture template on which the design space exploration
is based therefore contains data-parallel (SIMD) as well as
instruction-parallel (ILP) processors.

One of the main goals of the project is keeping the sys-

Henk Corporaal
Eindhoven University of Technology
Department of Electrical Engineering

Den Dolech 2, Eindhoven, The Netherlands

384

h.corporaal @tue.nl

tem easy to program. This means that one single program
should map to a wide range of configurations of a wide
range of processors. It also means that the application de-
veloper shouldn’t have to learn a parallel programming lan-
guage. The solution presented below is based on using al-
gorithmic skeletons to exploit data parallelism within each
operation, while a form of asynchronous RPC allows the
operations to run concurrently.

The structure of this paper is as follows: section 2 reviews
some related work. Sections 3 and 4 describe our pro-
gramming environment and some optimizations. Section 5
presents some results from our prototype, and finally sec-
tion 6 draws conclusions and points to future work.

2 Related work

Programming environments for image and signal pro-
cessing applications are widely ranged. Tightly coupled
systems usually have parallel extensions to a sequential lan-
guage, like Celoxica’s Handel-C [2] for FPGA program-
ming, or NEC’s 1DC [7] for their IMAP SIMD arrays.
More loosely coupled systems usually work with the con-
cept of a task or kernel, and differ in how these tasks are
programmed and composed.

Process networks such as used by YAPI [4] allow much
freedom in specifying the tasks, but require a static con-
nection network between them. StreamC/KernelC [8], de-
veloped for Imagine, reduces the allowed syntax within a
kernel, but makes the interconnections dynamic by using
streams. Their current implementation doesn’t support task
parallelism, however. EASY-PIPE [9] does, but requires a
batch of tasks to be explicitly compiled and dispatched by
the user. Their main contribution is the use of algorithmic
skeletons to make programming the tasks easier. Finally,
Seinstra [11] allows no user specification of the tasks, in-
stead relying on an existing image processing library. It is
also limited to data parallelism, but these restrictions allow
it to be more transparent to the user, presenting a purely
sequential model.

Futures were introduced in the MultiLisp [5] language
for shared-memory multiprocessors. Requesting a future
spawns a thread to calculate the value, while immediately

returning to the caller, which only blocks when it tries to
access it. Once the calculation is complete, the future is
overwritten by the calculated value. Batched futures [10]
apply this concept to RPC, but with the intent to reduce the
amount of RPC calls by sending them in batches that may
reference each other’s results.

3 Programming

Our programming environment is based on C, to provide
an easy migration path. In principle, it is possible (although
slow) to write a plain C program and run it on our system.
In order to exploit concurrency, though, it is necessary to
divide the program into a number of image processing op-
erations, and to apply these using function calls. Parts of the
program which cannot easily be converted can be left alone
unless the speedup is absolutely necessary.

The main program, which calls the operations and in-
cludes the unconverted code, is run on a control processor,
while the image processing operations themselves are run
on the coprocessors that are available in the system (the
control processor itself may also act as a coprocessor). Only
this main program can make use of global variables; be-
cause of the distributed nature of the coprocessor memory,
all data to and from the image processing operations must
be passed using parameters.

3.1 Within-operation parallelism

The main source of parallelism in image processing is
the locality of pixel-based operations. These low-level op-
erations reference only a small neighborhood, and as such
can be computed mostly in parallel. Another example is
object-based parallelism, where a certain number of possi-
ble objects or regions-of-interest must be processed. Both
cases refer to data parallelism, where the same operation
is executed on different data (all pixels in one case, object
pixels or objects in the other).

Data parallel image processing operations map particu-
larly well on linear SIMD arrays (LPAs). However, since
we don’t want the application developer to write a parallel
program, we need another way to allow him to specify the
amount of parallelism present in his operations. For this
purpose, we use algorithmic skeletons. These are templates
of a certain computational flow that do not specify the actual
operation, and can be thought of as higher-order functions,
repeatedly calling an instantiation function for every com-
putation. Take a very simple binarization:

for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)
out[y][x] = (in[y][x]>128);

Using a higher-order function, PixelToPixelOp, we can
separate the structure from the computation. PixelToPix-
elOp will implement the loops, calling binarize every iter-
ation:

int binarize(int value)
return (value>128);

void PixelToPixelOp(int (*op)(int),
int in[HEIGHT][WIDTH], int ouf[HEIGHT][WIDTH])
for (y=0; y<HEIGHT; y++)
for (x=0; x<WIDTH; x++)
out[y][x] = op(inlyl[x]);

PixelToPixelOp(binarize, in, our);

Note that implementing PixelToPixelOp column-wise
instead of row-wise — by interchanging the loops — does not
change the result, because there is no way for op to refer-
ence earlier results (side effects are not allowed). It can be
said that by specifying the inputs and outputs of the instanti-
ation function, the skeleton characterizes the available par-
allelism. So, by choosing a skeleton, the programmer makes
a statement about the parallelism in his operation, while not
specifying how this should be exploited. This freedom will
allow us to optimally map the operation to different archi-
tectures.

Another benefit is that the image processing library nor-
mally shipped with DSPs and other image processors is re-
placed by a skeleton library, which is more general and thus
less in need of constant updates.

Of course, not all operations can be data-parallelized as
easily as pixel operations. More irregular operations place
increasing demands on the autonomy and interconnection
of the processing elements. For example, for efficient im-
plementation, local neighborhood operations are straight-
forward, recursive neighborhood operations require indirect
addressing, run-length encoding requires non-local commu-
nication, and edge following is mostly sequential. However,
even in the sequential case the skeleton approach can still
be used, if only to facilitate programming instead of paral-
lelization. If specialized hardware then becomes available,
it is easier to make use of it.

3.2 Between-operation parallelism

An image processing application consists of a number
of operations described above, surrounded by control flow
constructs. Because our hardware platform is heteroge-
neous, it is important that multiple of these operations are
run concurrently, as not all processors can be working on the
same computation. We are therefore using asynchronous
RPC calls as a method to exploit this task-level parallelism.

In RPC, the client program calls stubs which signal a
server to perform the actual computation. In our case, the
application is the client program running on the control pro-
cessor, while the skeleton instantiations are run on the co-
processors. This alone does not imply parallelism, because
the stub waits for the results of the server before returning.
In asynchronous RPC, therefore, the stub returns immedi-
ately, and the client has to block on a certain operation be-
fore accessing the result. This allows the client program to

run concurrent to the server program, as well as multiple
server programs to run in parallel.

However, this still has the disadvantage of requiring the
client program to wait on the completion of an operation be-
fore passing its result to another one, even though it never
uses the results itself. To address this problem, we are using
MultiLisp’s concept of futures, placeholder objects which
are only blocked upon when the value is needed for a com-
putation. Since simple assignment is not a computation,
passing the value to a stub doesn’t require blocking; once
the called function needs the information, it will block it-
self until the data is available, without blocking the client
program:

while(1)
Read(in);
PixelToPixelOp(op1, in, interl);
PixelToPixelOp(op2, in, inter2);
PixelReductionOp(op3, interl, inter2, out);

/* Concurrent client code */
_block(out);
/* Dependent client code */

4 Optimizations

While our futures-like implementation is much less elab-
orate than MultiLisp’s (requiring, for example, explicit
blocks on results, although these could be inserted by the
compiler), it does tackle two other problems: data distribu-
tion and memory usage. Both originate from our architec-
ture template, which features distributed-memory proces-
sors with a relatively low amount of on-chip memory.

Furthermore, although the skeletons are called as higher-
order functions in order to provide an easy migration path,
we avoid the function call overhead by using source-to-
source transformations. Using transformations also allows
us to translate between different target processor languages,
and to provide an efficient way to specify skeletons that are
polymorphic in the number and types of their arguments.

4.1 Data distribution

The data generated by most image processing operations
is not accessed by the client program, but only by other op-
erations. This data should therefore not be transported to
the control processor. In order to achieve this, we make a
distinction between images (which are streams of values)
and other variables.

Images are never sent to the control processor unless
the user explicitly asks for them, and as such no memory
is allocated and no bandwidth is wasted. Rather, they are
transported between coprocessors directly, thus avoiding
the scatter-gather bottleneck present in some earlier work
[9]. All other variables (thresholds, reduction results, etc.)
are gathered to the control processor and distributed as nec-
essary. These can be used by the programmer without an
explicit request.

386

The knowledge about which data to send where, simply
comes from the inputs and outputs to the skeleton opera-
tions, which are derived from the skeleton specification and
are available at run time. Coprocessors are instructed to
send the output of an operation to all peers that use it as an
1nput.

4.2 Memory usage

Our concern about memory usage stems from the fact
that especially SIMD LPAs for low-level image processing
may not have enough memory to hold an entire frame, let
alone multiple frames if independent tasks are mapped to
it. These processors are usually programmed in a pipelined
way, where each line of an image is successively led through
a number of operations. We would like our system to con-
serve memory in the same way, and have therefore specified
all our skeletons to read from and write to FIFO buffers.

The distribution mechanism allocates these buffers, and
sets up transports as described above. The operations them-
selves read the needed information from the buffer, process
it, and write the results to another buffer. A method is pro-
vided to signal that no more data will be forthcoming. This
conserves memory, because even a series of buffers is gen-
erally much smaller than a frame. Simultaneously, it hides
the origin of the data, making the operations independent
of the producers of their input and the consumers of their
output.

The price of all this is that operations must consume data
in a certain order, and if the source operation doesn’t gener-
ate it in the correct sequence, a reordering operation must
be inserted, typically requiring a frame memory. Fortu-
nately, many low-level operations can tolerate different or-
derings, while more irregular operations are generally run
on processors with enough memory.

5 Results

We have implemented a double thresholding edge detec-
tion algorithm on a prototype architecture consisting of a
XETAL [1] 16 MHz 320-PE SIMD processor and a TriMe-
dia [12] 180 MHz 5-issue VLIW processor (figure 1). In
this algorithm, the Bayer pattern sensor output is first inter-
polated, then the Sobel X and Sobel Y edge detection filters
are run and combined, the output is binarized at two levels,
and finally the high threshold is propagated using the low
threshold as a mask image. This final propagation cannot
be run on the XETAL, because it requires a frame memory.

Three situations were compared: one in which the entire
algorithm was implemented in a single operation on the Tri-
Media, as a baseline for how a sequential application would
be written. Next, the operation was split into tasks as de-
scribed above, and all tasks were mapped to the TriMedia;
this shows the overhead caused by the task switching and
buffer interaction. Finally, all low-level operations were
mapped to the XETAL, while the propagation and display
were mapped to TriMedia; this resembles the final situation
as it would run on our system. See table 1.

CMOS sensor |
640x480 ?
Bayer pattern Light
10, 16 MHz
SIMD processor
320 PEs, 5 GOPS
16 linemems, 107Gb/s
2,12C 8, 16 MHz
ILP processor SDRAM
5-way VLIW, 900 MOPS |=>| 32 MB
pSOS RTOS
¢ VGA out

Figure 1: Inca+ prototype architecture (Philips CFT)

Table 1: Timing results of the double thresholding edge de-
tection algorithm

Trial | Processing time

Single operation (TriMedia) 115 ms
Split operations (TriMedia) 124 ms
Parallel (XETAL + TriMedia) 67 ms

Because XETAL has only 16 line memories, the buffers
between the filters were 1 line. On the TriMedia, they were
16 lines, to avoid too much context switching. An allocate-
and-release scheme was used on the TriMedia, so that no
extra state memory was needed in the filters, and no unnec-
essary copies were made.

As can be seen, the overhead of running the RPC system
is around 8% (with 16-line buffers; the overhead approaches
zero if full-frame buffers are used, but that is unrealistic).
This seems quite a reasonable tradeoff if we consider that it
can now run transparently on the parallel platform, achiev-
ing a 42% processing time decrease. Actually, because the
filtering and propagation are done concurrently in the par-
allel case, the processing time is bounded by the slowest
operation, which is the propagation.

6 Conclusions and future work

We have presented a system in which an application de-
veloper can construct a parallel image processing applica-
tion with minimal effort. Data parallelism is captured by
specifying the way to process a single pixel or object, with
the system handling distribution, border exchange, etc. Task
parallelism of these data parallel operations is achieved

387

through an RPC system, preserving the semantics of normal
function calls as much as possible. Results from an actual
prototype architecture have shown that the system works,
and can achieve a significant speedup by using an SIMD
processor for low-level vision processing.

The automatic skeleton instantiation is currently limited
to ILP processors, and we wish to include XETAL and
IMAP skeletons as well. Furthermore, we want to inves-
tigate dynamic image sizes and data types. Finally, an au-
tomatic mapping step should combine CPU-, memory-, and
bandwidth usages to best determine buffer sizes and assign
operations to processors.

This work is supported by the Dutch government in their
PROGRESS research program under project EES.5411.

References

[1] A. Abbo, R. Kleihorst, L.Sevat, P. Wielage, R. van Veen,
M. op de Beeck, and A. van der Avoird. A low-power paral-
lel processor IC for digital video cameras. In Proceedings of
the 27th European Solid-State Circuits Conference, Villach,

Austria. Carinthia Tech Institute, September 18-20 2001.
Celoxica Limited. Handel-C Language Reference Manual,

2003.

M. Cole. Algorithmic Skeletons: Structured Management
of Parallel Computation. Research Monographs in Parallel
and Distributed Computing. The MIT Press, 1989. ISBN
0-273-08807-6.

E. de Kock, G.Essink, W. Smits, P. van der Wolf, J.-Y.
Brunel, W. Kruijtzer, P. Lieverse, and K. Vissers. YAPI:
Application modeling for signal processing systems. In
Proceedings of the 37th Design Automation Conference
(DAC2000), pages 402405, June 5-9 2000.

R. Halstead, jr. Multilisp: A language for concurrent sym-
bolic computation. ACM Transactions on Programming

Languages and Systems, 7(4):501-538, October 1985.
P. Jonker and W. Caarls. Application driven design of em-

bedded real-time image processors. In Proceedings of Acivs
2003 (Advanced Concepts for Intelligent Vision Systems).

Ghent University, September 2-5 2003.

S. Kyo, S. Okazaki, and I. Kuroda. An extended c lan-
guage and compiler for efficient implementation of image
filters on media extended micro-processors. In Proceedings
of ACIVS 2003, pages 234-241. Ghent University, Septem-
ber 2-5 2003.

P. Mattson. A Programming System for the Imagine Me-
dia Processor. PhD thesis, Dept. of Electrical Engineering,
Stanford University, 2001.

C. Nicolescu and P. Jonker. EASY PIPE - an "EASY to
use” Parallel Image Processing Environment based on algo-
rithmic skeletons. In Proceedings of the PDIVM Workshop,
2001.

P.Bogle and B. Liskov. Reducing cross domain call overhead
using batched futures. In Proceedings of the ninth annual
conference on Object-oriented programming systems, lan-
guage, and applications, pages 341-354. ACM Press, 1994.
ISBN 0-89791-688-3.

F. Seinstra and D. Koelma. Lazy parallelization: A finite
state machine based optimization approach for data paral-
lel image processing applications. In Proceedings of the

PDIVM Workshop, 2003.
G. Slavenburg. TM1000 Databook. TriMedia Division,
Philips Semiconductors, 1997.

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

