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Abstract

In this study, a periodic image element structure, referred
to as regular dot pattern is defined. Two methods are in-
troduced to detect irregularities in regular dot patterns. In
the experimental part the proposed methods are applied to
detect missing elements, dots, from digitized Heliotest sam-
ples which are considered to form a regular dot pattern. He-
liotest assessment is used in the paper and printing industry
to measure printability of different paper grades.

1 Introduction

In many quality assurance tests it is desirable to to locate
defects in order to determine quality of a product. Many
manmade objects are also repetitive in nature: e.g., fab-
rics have stripes that repeat throughout the whole fabric,
halftone printed images consist of small dots that form let-
ters or images, etc. In this study, we first search repetitive
patterns from images and by utilizing reqularity we detect
irregularities from patterns. The irregularities may repre-
sent defects in an observed product and should be reported
in order to determine the final quality of a product.

An example application can be found from quality con-
trol of halftone printing: detection of missing dots in ro-
togravure prints. The test is usually performed manually
off-line by laboratory experts and is called Heliotest paper
printability test in paper and printing industry. There have
been several propositions for missing dot detection, e.g., by
Langinmaa [6] and Heeschen and Smith [5], but they have
failed to satisfy the requirements of paper and printing in-
dustry.

In this study the regular dot patterns are defined and then
based on the definition two methods are proposed for ac-
curate irregularity detection. In the experimental part the
proposed methods are applied to missing dot detection from
rotogravure test print strips. The goal of this research is to
implement a machine vision based system that will locate
missing dots from Heliotest images.

2 Pattern regularity

Regularity is a property which means that some mnemonic
instances follow predefined rules. In the spatial domain
regularity typically means that a pattern consists of a pe-
riodic or quasi-periodic structure of smaller pattern units or
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atoms, and thus, it is worthwhile to explore pattern regular-
ity in terms of periodical functions and especially via their
Fourier transforms. The following is mainly based on defi-
nitions in solid state physics and is related to Bravais lattice
formulations [1].

Bravais lattice is an infinite array of discrete points with
an arrangement and orientation that appears exactly the
same, from whichever of the points the array is viewed. A
two-dimensional Bravis lattice consists of points with posi-
tion vectors R of the form

R = nlé'l + Tlgc_ig

ey

where @ and @y are any two vectors not both on the same
line and ny and ny range through all integer values. The
vectors d; are called prime vectors and are said to generate
or span the lattice. In Figure 1 is shown a portion of two-
dimensional Bravais lattice.
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Figure 1: A two-dimensional Bravais lattice. All points are
linear combinations of two primitive vectors (e.g. P = a1+
205 and Q = —adq + do).

The definition of Bravais lattice refers to points, but it
can also refer to a set of vectors which represent another
structure. A point as an atom can also be replaced with any,
preferably locally concentrated, structure. A region which
includes exactly one lattice point is called a primitive unit
cell and @; now define spatial relationship of unit cells. Unit
cells can also be defined as non-primitive but in both cases
they must fill the space without any overlapping.

2.1 Fourier transform of 2-d periodic functions

Let us consider a function f () (where 7 = (x, y)) in which
the spatial domain is a periodic extension of a unit cell. Pe-
riodicity can be formally described. Let M be a 2 x 2 matrix
which is invertible and such that

f (M +7) = f(F) 2)

where m is any 2-dimensional integer vector. Now, every
point 7 in the space can be written uniquely as

7= M (7 + ) 3)



where 77 is a 2-dimensional integer vector and « is a vector
where each coordinate satisfies 0 < u; < 1. The unit cell
U (M) is a region in space corresponding to all points M.
It can be shown that the volume of unit cell is V' = |det M].

The set of all points £ (M) of the form M7 is called the
lattice induced by M. Any point in the space corresponds
to a point in the unit cell translated by a lattice vector. Note
that a sum of two lattice vectors is a lattice vector and the
periodicity of function f implies that its value is invariant
under translations by multiples of the lattice vector. A ma-

trix M can be obtained by inverting and transposing M

M=MT. )

For M new lattice and unit cell can be associated, called
the reciprocal lattice £ (M ) and the reciprocal unit cell

U (J\Z/ ), respectively. If we consider wave number space,

each vector k is written uniquely as

K= N (/z + {) (5)
where £ is a 2-dimensional integer vector and g" contains all
ordinates 0 < ¢; < 1. The reciprocal lattice vectors span

the lattice points M.

The fundamental result is that the Fourier transform of a
periodic function with a unit cell specified by M has a dis-
crete spectrum, peaks located at the reciprocal lattice points
specified by M [1]. That is, the wavenumber vectors are
constrained to lie at the reciprocal lattice points. The ex-
plicit transform and inverse transform formulas are

fur (F) = ot

-~ ~i(E7) gy (7
|det M| Jrcri(an fPe )

and B
f) = Z far (E) eF T

Fec ()

)

The discrete spectrum can be interpreted as a continuous
spectrum consisting of Dirac impulse functions located at
the reciprocal lattice points

f(/Z) =3 fu (ME)(S(E—M/%)

REZD
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2.2 Fourier transform of 2-d quasi-periodic func-
tions

Unfortunately in the real world the structures are usually
only approximately periodic (quasi-periodic). In an ideal
case where a pattern image whose unit cell and lattice struc-
tures are specified by M, is unbounded in all directions.
Then it is the superposition of waves whose wavenumber
vectors are necessarily precisely lattice vectors in the recip-
rocal lattice specified by M=MT.

However, a real image has finite extent and has imperfec-
tions (irregularities). The ideally periodic function must be
constrained to satisfy practical boundary conditions. This
can be illustrated by considering a situation, where the pat-
tern is comprised by a finite number of translates of unit
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cell. Let V denote the finite region occupied by the pattern,
and consider the window function w,, () defined as

rey

L,
w, () = { 0, otherwise ®)

If f(7) is the ideal, truly periodic function (periodicity
specified by M) and f, () is the truncated function

o= @50 ={ 1 Lihie 00
then fy, (7) has a continuous spectrum given by
FoB) =" far(MIR)w, (K — MIR) 11
REZ?

where w,, is the Fourier transform of w,. It can be shown
that w, contains a continous spectrum which has infinite

extent, but which fades out proportionately fast with 1/ ’l; ‘

The most important result is that quasi-periodic func-
tions have quasi-discrete spectra, with the spectral energy
concentrated at points in the reciprocal lattice. Thus in
terms of function periodicity, pattern irregularity can be de-
fined as an aperiodic function e(z,y), with spatial energy
el < [ful.

Finally, the initial 2-d pattern image can be represented

fo(7) = w, (P f(F) + €(7) (12)

and the problem is to separate the regular part w, (7)f(7)
and the irregular part ¢(7) as accurately as possible.

as

3 Extracting regular pattern information

As it was described in the previous section the construc-
tion of model of ideal regular part of an image is crucial for
the irregularity detection. Without first detecting the regular
pattern underlying in an image, it is impossible to detect any
irregularity in it. The more accurate model of regular image
can be established, the more accurate detection and classifi-
cation of irregularities can be done. Detail level needed for
the regular part formation is particularly high for example in
Heliotest images [9], and thus, typical texture segmentation
methods (e.g., [4]) or defect detection methods (e.g., [2]) do
not provide a sufficient accuracy. One attractive approach
to estimate an ideal regular pattern is to form an analytical
model and to estimate model parameters based on the input
image [2], but this requires correct and very accurate analyt-
ical model which cannot be achieved due to discrete image
resolution and expensive computations.

3.1 Exploiting Fourier domain

Let us consider real images which represent regular dot pat-
terns, such as the images produced by the Heliotest assess-
ment. An example image and its Fourier spectra are shown
in Figure 2. From the figure, it is possible to see the dis-
tinctive frequency peaks which in turn are located at the
reciprocal lattice points.

By filtering the reciprocal lattice frequencies it is pos-
sible to estimate the faultless periodic component, i.e., the
ideal regular pattern of input image. By filtering all other
frequencies than reciprocal lattice frequencies, the irregular
part of original image can be estimated. The regular and
irregular parts that are estimated are now called as regular



Figure 2: Example of regular dot pattern image (Heliotest)
and its Fourier spectra magnitude.

and irregular parts of image. The separation process can be
formulated as

€(@,y) =F {E(u,v)} =
S HM(u, v)Z(u,v) + (I(u,v) — M(u,v))Z(u,v)} =
5 M, )= (u,

13)
where £(,y) is an image, § and §~ ! are the forward and
inverse discrete Fourier transforms, 9t(u, v) is a mask fil-
ter (real valued function of the same definition domain as
=Z(u,v)), and I(z,y) is a unit function. The decomposition
in Eq. (13) is possible according to identity of the addition
operation in the spatial and frequency domains. The mask
M(u, v) is used to filter frequencies at peak locations in the
frequency domain.

4 Irregularity detection algorithms

The following algorithms detect missing dots from images
of a 2-d periodic dot patterns.

4.1 Method based on global gray-level processing

This method (Method 1) is based on the fact that the peri-
odic regular structure provides intensity peaks in the Fourier
domain as was previously demonstrated. If the mask 9t
can be automatically generated by utilizing locations of the
peaks in the frequency domain, then the regular and irregu-
lar parts of an image can be extracted as shown in Eq. (13).
From the irregular image it is possible to find irregularities
by thresholding and then by processing the binary areas.
The original image can be preprocessed in order to elimi-
nate illumination changes and acquisition noise.

Next, it is assumed that the dots forming the regular pat-
tern are represented by high gray-level intensity values and
the background by low intensity values. Furthermore, the
values are assumed to be normalized between O and 1. Ir-
regular component extraction is presented in Algorithm 1.

Algorithm 1 Irregular image extraction

1: Compute magnitude of the Fourier transform |Z| of an
input image &.

2: Form the reciprocal lattice vectors using locations of
magnitude peaks.

3: Create the mask M by setting Gaussian band-pass fil-
ters to reciprocal lattice points.

4: Extract the irregular component from & using the mask
N and the inverse Fourier transform.

Most of the steps are clear enough, but the second step
requires some more explaining. The purpose of Step 2 is
to locate all the high frequency peaks in the Fourier do-
main. The reciprocal lattice is defined by the primitive vec-
tors, which can be estimated within a sub-pixel accuracy

)} +FHUI (u,v) — M(u,v))=(u,v)}
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using the peak locations, but estimation may be sensitive
to the initial guess. The estimation ambiguity occurs due
to harmonic components and can only be prevented using a
sufficiently accurate initial guess. Another ad hoc solution
would be to locate all frequency peaks, but since the fre-
quency plane is discrete, the harmonic set estimation based
on lower frequencies is not accurate and they need to be ad-
justed to actual local maxima. This adjustment is performed
by looking for a local maximum in a certain neighborhood.
For example rectangular neighborhood can be used.

The irregular image needs to be processed in order to
distinquish the significant irregularities from the noise that
is also present in real images. Algorithm 2 can be used for
that purpose.

Algorithm 2 Detecting irregularities from irregular im-
age
1: Threshold the irregular image &1 using the threshold
limit T.
2: Remove foreground areas of a size less than S.
3: Compute centers of each foreground areas.
4: Return centers as irregularity coordinates.

There are various methods for binary processing tasks, e.g.,
areas less than size S can be removed by using the binary
opening procedure [3]. Due to the image normalization in
the previous stages, the parameters 7 and .S can be fixed and
the value selection remains an application specific task.

4.2 Method based on local gray-level processing

This approach (Method 2) is divided into two parts. First
the spatial lattice points are estimated and then the spatial
points are locally classified.

Spatial lattice estimation correspond to the estimation of
irregularities in the regular part, and thus, Algorithms 1 and
2 can be used to locate centroids of the unit cells. The only
difference is that the regular image part is used instead of
the irregular one. When all the centroids of the regular im-
age part are located, the original image is processed and
analyzed at each unit cell location.

Local classification at the locations of the unit cells is
then performed in order to determine whether it is regular
or irregular, missing or not missing. First some kind of fea-
ture extraction is needed, e.g, vector of all gray-level values.
After feature extraction the unit cells can be classified using
a classifier, e.g., for vectors of gray-level values a principal
component subspace classifier can be used [8]. It should be
noted that a separate training set is needed in this approach,
but on the other hand the local processing also provides de-
tailed information about an error type of a missing dot.

S Experiments

In the experiments the methods and algorithms were applied
to real data.

5.1 Heliotest data

Paper printability is a property which describes how a cer-
tain type of paper behaves in a printing process. In general,
the printability property depends on interactions between
paper and printing ink, and variables of printing process it-
self. Good printability generally means that the paper is not
sensitive to the variations in the variables and provides a
good printing quality. In practice, an estimation of the print



Figure 3: Part of a typical Heliotest strip. The dimensions
of a whole test strip are 110mm by 85mm.

quality can be achieved by several different quality assess-
ments [7].

In rotogravure printing process, the greatest problem in-
volves reproduction of light and medium tones. In the re-
production of tones, the two recognized defects are missing
dots and waving. In the missing dot defects, the ink is not
transferred to the paper which is considered to be due to a
bad quality of paper. Paper surface does not allow the ink
to soak into the paper. Ink adhesion can be tested by using
a special Heliotest machine which generates a rotogravure
print samples from which the missing dots are then calcu-
lated by visual inspection. An example of Heliotest strip
can be seen in Figure 3.

For the experiments, a set of reproduced Heliotest strips
were scanned using 1200 dpi resolution. The training set
consisted of 75 images and the test set of 70 images. The
training set was needed to train two set of classes: a dot and
a missing dot. In addition, because the parameters of the ro-
togravure printing cylinder change along the strip, i.e., ink
cups get smaller, and respectively the dots become smaller
and lighter, it was practical to process strips in separate win-
dows. Each processing window had their own parameter
values in irregularity detection. For the selection of param-
eters, the training set was used.

5.2 Results

Ground truth of missing dots was created by visually in-
specting the strips and the comparison between the two pro-
posed methods was done with respect to the ground truth.

Paper and printing industry measuser a distance to the
20th missing dot from the beginning of strip. The same
measure was used in this study. Fig. 4 shows errors for
the both methods as compared to manually found distances
to the 20th missing dot. Method 2 was more accurate, but
slower. As it can be seen from Figures 4(b) and 4(c), errors
for both methods were less than 1 cm. The whole length of
the test strip was 11 cm. The accuracies of both methods
were adequate for industry purposes.

6 Conclusions

Two methods were proposed to detect irregularities in reg-
ular dot patterns. Both methods assume that an image can
be divided into regular and irregular parts, where the regu-
lar part is sufficiently strong to be detected in the reciprocal
space. The first method directly utilizes the irregular parts
and processes it globally to detect the most visible irregular-
ities. The second method utilizes the regular part to find the
centroids of all unit cells and then locally classifies whether
a cell is distorted or not.

Based on the proposed methods an automatic apparatus
can be built to be used in the Heliotest assessment. In the
future industry requires a more specific information of dif-
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Figure 4: Accuracy of distances to the 20th missing dot
as compared to the ground truth: (a) Percentage of images
where specific accuracy was achieved; Error histograms for
(b) Method 1 and (c) Method 2.

ferent kind of irregularities in dot shapes. For that purpose
the proposed method 2 can be further developed.
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