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ABSTRACT 

This paper presents a biometric recognition system 
based on the iris of a human eye using wavelet transform. 
The proposed system includes three modules: image 
preprocessing, feature extraction, and recognition 
modules. The feature extraction module adopts the 
gradient directions (i.e., angles) on wavelet transform as 
the discriminating texture features. The identification 
system encodes the features to generate the iris codes 
using two simple and efficient coding techniques: binary 
Gray encoding and delta modulation. The experimental 
results show that the recognition rates up to 95.27%, 
95.62%, 96.21%, and 99.05%, respectively, using 
different coding methods can be achieved. 

I. INTRODUCTION 

Biometrics [1] refers to automatic identity authentication 
of a person on a basis of one’s unique physiological or 
behavioral characteristics. To date, many biometric 
features have been applied to individual authentication. 
The iris, a kind of physiological feature with genetic 
independence, contains extremely information-rich 
physical structure and unique texture pattern, and thus is 
highly complex enough to be used as a biometric 
signature. Statistical analysis reveals that irises have an 
exceptionally high degree-of-freedom up to 266 
(fingerprints show about 78) [1], and thus are the most 
mathematically unique feature of the human body; more 
unique than fingerprints. Hence, the human iris promises 
to deliver a high level of uniqueness to authentication 
applications that other biometrics cannot match. 

In 1993 Dougman developed a successful system by 
using the 2-D Gabor wavelet transform [2]. In this 
system, the visible texture of a person's iris in a real-time 
video image is encoded into a compact sequence of 
multi-scale quadrature 2-D Gabor wavelet coefficients, 
whose most significant bits consist of a 256-byte “iris 
code.” In 1996, Wildes et al. developed a prototype 
system based on an automated iris recognition that uses 
a very computationally demanding image registration 
technique [3]. This system exploits normalized 
correlation over small tiles within the Laplacian pyramid 
bands as a goodness of match measure. Boles and 
Boashash [4] proposed an iris identification system in 
which zero-crossing of the wavelet transform at various 
resolution levels is calculated over concentric circles on 
the iris, and the resulting 1-D signals are compared with 
the model features using different dissimilarity functions. 
Ma et al. also adopted wavelet multi-resolution analysis 

based on Gabor filtering for iris feature extraction [5]. 

II. OVERVIEW AND PRE-PROCESSING 

A. System Overview 

The proposed framework consists of three modules: 
image pre-processing, feature extraction, and recognition 
modules (Fig. 1). Since the system is tested on the 
CASIA iris image database [6], this paper takes no 
account of the iris image acquisition module. The entire 
system flow is briefly described as follows. First, the iris 
image pre-processing (IIP) module employs some image 
processing algorithms to demarcate the region of interest 
(i.e., iris zone) from the input image containing an eye. It 
performs three major tasks including iris localization, 
iris segmentation and normalization, and enhancement. 
Next, the iris feature extraction (IFE) module performs a 
2-D wavelet transform, computes the gradient direction 
features, and applies appropriate coding methods on 
these features to generate the iris feature code. Finally, 
the iris pattern recognition (IPR) module employs a 
minimum distance classifier according to Hamming 
distance or Euclidean distance metric to recognize the 
iris pattern by comparing the iris code with the enrolled 
iris codes in the iris code database. 
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Fig. 1. The proposed iris recognition system. 

B. Pre-Processing Module 

Input image does contain not only useful information 
from iris zone but also useless data derived from the 
surrounding eye region. Before extracting the features of 
an iris, the input image must be pre-processed to localize, 
segment and enhance the region of interest (i.e., iris 
zone). The system normalizes the iris region to 
overcome the problem of a change in camera-to-eye 
distance and pupil’s size variation derived from 
illumination. Furthermore, the brightness is not 
uniformly distributed due to non-uniform illumination, 
the system must be capable of removing the effect and 
further enhancing the iris image. Hence, the IIP module 
consists of three units: iris localization, iris segmentation 
& normalization, and enhancement units (Fig. 2). 
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Fig. 2. Pre-processing module. 

III. THE PROPOSED IRIS RECOGNITION 

A. Feature Extraction with Wavelet Transform 
Wavelet transform has been widely used to solve the 
intrinsic redundancies that appear in a multi-scale 
analysis [7]. The WT components are proportional to the 
coordinates of the gradient vector of f smoothed by j :: 2θ
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The modulus of this gradient vector is proportional to 
the WT modulus 
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Let A
2j f (u, v) be the angle of the gradient direction 

vector (Eq. (2)) in the plane (x, y) 
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An edge point at the scale 2j is a point γ such that M
2j f (u, 

v) is local maximum at (u = uγ, v = vγ) when 
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These points are also called WT modulus maxima. A 
simple criterion is used to detect edges. To capture the 
spatial details of an image, it is advantageous to make 
use of a multi-scale representation. In the paper, we 
extract the angle of the gradient direction of the WT as 
the iris feature and encode it efficiently. First, we apply 
WT on the iris image and compute the angle of the 
gradient direction at a specific scale. In this paper, we 
use quadratic spline function as the wavelet function. 

Individual wavelet modulus maxima are chained 
together to form a curve that follows an edge. At any 
location, the tangent of the edge curve is approximated 
by computing the tangent of the angle of the gradient 
direction [8]. Thus, we select the angle of the gradient 

direction as the iris feature for recognition. It is 
advantageous because the gradient direction will not be 
affected by contrast and illumination of the input images. 
Since singularities and irreguar structures in iris images 
often carry essential information, we adopt two different 
representations to extract and encode the features from a 
human iris image. 

B. GDC Method: Gradient Direction Coding 
with Gray code 
The first method, called the GDC method, is gray coding 
that is a 2-D method and encodes the gradient direction 
of each small 2-D iris image block in WT domain. The 
scale of the wavelet representation in this method is j=4. 
Fig. 3 shows the flowchart of the GDC method. 
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Fig. 3. The flowchart of the GDC method. 

After demarcating the iris zone which contains two 
rectangles with the size 256×32 pixels and two 
rectangles with the size 212×32 pixels, we subdivide the 
four 2-D rectangular iris images in the WT gradient 
direction domain equally into 472 small blocks. The 
mean of ( ) of all pixels within each iris block is 
extracted as the edge feature of the block. Accordingly, 
472 features for each input iris image are obtained. To 
reduce the code length of iris features and avoid affected 
by noise, we encode these features using the Gray code. 
The codes corresponding to the adjacent intervals differ 
from only one bit, thus the Hamming distance between 
them is minimum. On the other hand, the codes 
corresponding to the interval which differ 180°  are 
different by all of the four bits, thus the Hamming 
distance between them is maximum. Which code is used 
to represent the block depends on which interval the 
mean gradient direction computed from each block 
belongs to. Totally, a code vector of 295 bytes (including 
59 bytes of ROI side information) is generated to 
represent an iris image by using the GDC method. 

vufA j ,2

C. DMC Method: Delta Modulation Coding 
The second method is called the DMC method in which 
the delta modulation concept is used to efficiently 
encode the feature information. This is a 1-D method in 
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which the 2-D feature information is converted into 1-D 
feature signals before encoding. The encoding method 
used here is delta modulation. The single bit, providing 
for just two possibilities ±∆, is used to increase or 
decrease the estimated signals. Here, we adopt linear 
delta modulation (DM) and constant factor adaptive 
delta modulation (CFDM) in the IFE module. 
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Fig. 4. The flowchart of the DMC method. 

In this method, we also use the information of 
gradient direction in the WT domain at a specific scale 
for recognition. The scale of the wavelet representation 
in this method is j=3. Fig. 4 shows the flowchart of this 
method. We first convert the 2-D iris blocks into 1-D 
signal with ring-projection by computing the mean of 
gradient direction of each 8×1 pixels block as a sampled 
point of the 1-D signal for reducing the dimensionality 
of 2-D image To acquire shorter code length and outer 
regions are easily polluted by lower eyelid and eyelashes; 
and further, the perpendicular texture of iris has more 
information entropy, we only select the two inner 
regions of size 256×16, which are closer to pupil, as the 
iris features. Because of the conversion of 8 vertically 
consecutive pixels to a sampled point, we obtain four 
1-D discrete signals each with the length of 256 points. 
Totally, there are 1,024 feature points. 

After generating four 1-D patterns, we encode each 
of the patterns by the DM and CFDM methods. If 
encoding the features with the DM method, we initially 
select a step size Δ=24 and use sampling rate 1 Hz. 
With the CFDM method, the step size is set as Δ=16 
and the same sampling rate as in the DM method is used. 
Furthermore, the adaptation logic used in the CFDM 
method is {M1=0.7, M2=0.9, M3=1.1, M1=1.4}. As a 
result, a code vector of 132 bytes is required to represent 
an iris image with the DM and CFDM coding methods. 

D. Recognition Module 
In this module, the feature code vector extracted from 
the claimant iris image is compared against those of the 
enrolled feature code vectors in an iris database we 
created. Here for simplicity, we adopt the mean vector as 
the prototype of each pattern class in the enrollment 
phase and utilize the minimum distance classifier to 
check the approach in the recognition phase. When the 

feature code vector in the GDC method is compared, we 
calculate the normalized Hamming distance HD between 
two feature code vectors h

1
 and h

2
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where the subscripts k, l denote indexing bit position, ⊕ 
denotes the exclusive-OR operator, and rad denotes 
correcting the rotation effect of the input iris image. On 
the other hand, we adopt another metric for the DM and 
CFDM methods to calculate the normalized Euclidean 
distance D of feature vectors g

1
 and g

2
, defined as 
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where m denotes the position of restructured signal and 
rad correcting the rotation effect of the input iris image. 

IV. EXPERIMENTAL RESULTS 

We implemented and tested the proposed schemes on the 
CASIA iris image database [6]. It comprises 756 iris 
images captured from 108 different eyes (hence 108 
classes). Each original iris image has the resolution of 
320×280 in gray level. For each eye, seven images are 
captured in two sessions, in which three samples are 
collected in the first session and four in the second 
session. Here, False Acceptance Rate (FAR), False 
Rejection Rate (FRR) and Equal Error Rate (EER) are 
used to evaluate the performance. 

A. Results of Image Pre-processing 
We check the accuracy of the boundaries (including 
pupil, iris, and lower eyelid) subjectively and the 
proposed system obtains the success rate of 82.54% (624 
images) from 756 images in the experiments for the 
pre-processing module. Table 1 shows the summary of 
the causes of failure of image pre-processing. It is worth 
noting that the two main causes of failure come from 
occlusion by eyelids and non-uniform illumination. 

Table 1 Analysis of causes of failure for IIP module. 
Causes of Failure # of Data Ratio (%)

(1) Occlusion by eyelids or eyelashes 51 38.64 
(2) Inappropriate eye positioning 2 1.52 
(3) Pupil or iris is not a circular form 2 1.52 
(4) Non-uniform illumination 71 53.79 
(5) Affected by iris texture 3 2.27 
(6) etc. 3 2.27 

Total 132 100 

Among those 624 images obtained successfully 
from the image pre-processing module, we select 587 
images (90 classes) out of them for testing (enrollment 
and recognition). A half of 90 classes are regarded as 
legal users and the rest as impostors (illegal users). We 
train the system by selecting 3 images as the training 
image set for each person from the authorized users in 
the enrollment phase. Hence, there are 317 images for 
testing (160 images from the authorized users and 157 
images from the impostors). 
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B. Results of the GDC Method 
We perform two tests: one is for false rejection test (160 
images) and the other is for false acceptance rate test 
(157 images). For the case of FRR, we can obtain the 
distribution of non-matching distance between the 
unknown classes and the registered classes. For the case 
of FAR, we also obtain the distribution of non-matching 
between the unknown classes for impostors and the 
registered classes. Fig. 5(a) shows the distributions of 
the above two experiments. Fig. 5(b) shows the plot of 
variation of FRR and FAR according to the distribution 
of non-matching distance by selecting a proper distance 
threshold. When we set the threshold to be 0.3775, the 
system obtains the recognition performance of about 
EER=4.73%. And when the FAR is set to be 0%, the 
system can obtain FRR=6.88% at a threshold of 0.36. In 
particular, if we use a code vector of 585 bytes instead of 
295 bytes, the recognition performance of the proposed 
system can be lower to 0.95% only. The experimental 
results show that the proposed system performs well. 

 
(a)                      (b) 

Fig. 5. The GDC method: (a) the distribution of 
non-matching distance, (b) variation of FRR and FAR. 

C. Results of the DMC Method 
In the DM method, we obtain the distribution of 
non-matching distance for FRR and FAR experiments, 
as shown in Fig. 6(a). Fig. 6(b) shows the plot of 
variation of FRR and FAR by selecting a proper distance 
threshold. By selecting the threshold of 0.1785, the 
system obtains the system performance of EER=4.38%. 
Similarly, if the FAR is set to be 0%, the system can 
obtain FRR=9.38% at a threshold of 0.173. 

Next, we perform the same experiments for the 
CFDM method. The distribution of non-matching 
distance is shown in Fig. 7(a). Fig. 7(b) shows the plot of 
variation of FRR and FAR. The system performance is 
about EER=3.79% by selecting the threshold of 0.1645. 
Similarly, if FAR is set to be 0%, the system can obtain 
FRR=8.13% at a threshold of 0.159. The results show 
that the CFDM method performs better slightly than the 
DM method. The superiority of the CFDM method 
should come from the fact that it is adaptive. 

Table 2 shows the comparison of identification 
performances. It can be seen that both the DM and 
CFDM methods have a superior performance to the 
GDC method by comparing the EER performance. On 
the other hand, the DM method can performs superiorly 
in the case of FAR=0%. Consequently, the GDC method 
provides a securer system than the DM methods. 

 
(a)                      (b) 

Fig. 6. The results of the DM method. 

 
(a)                      (b) 

Fig. 7. The results of the CFDM method. 

Table 2 Comparison of identification performance. 

Mode IFE 
Module

Size of 
Features

RA 
(%) 

AA 
(%) 

AF 
(%) 

RF 
(%)

GDC 585 bytes 0.95 99.05 0.95 99.05
GDC 295 bytes 4.73 95.27 4.73 95.27
GDC 147 bytes 5.94 94.06 5.94 94.06
DM 132 bytes 4.38 95.62 4.38 95.62

ERR

CFDM 132 bytes 3.79 96.21 3.79 96.21

GDC 295 bytes 6.88 93.12 0 100

GDC 147 bytes 7.50 92.50 0 100

DM 132 bytes 9.38 90.62 0 100
FAR 
= 0%

CFDM 132 bytes 8.13 91.87 0 100
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