MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

8-29

Adaptive Vector Quantization of Sequences of Local Blocks
for Video Surveillance System

Mickael Pic and Takio Kurita
Neuroscience Research Institute

National Institute of Advanced Industrial Science and Technology
Tsukuba AIST Central 2, Umezono 1-1-1, Tsukuba 305-8561, Japan

1 Introduction

To keep security, video surveillance cameras have been
installed in public space such as convenience stores,
streets, ATM, etc. The number of such cameras is
increasing rapidly. When an incident happens, the cir-
cumstances of incidents can be confirmed by review-
ing the recorded scene. However, many of the cur-
rent surveillance systems record continuously every-
thing with low frame rate (for example 4 frames/sec.)
even when nothing happens. Because of lack of re-
trieval function, the current user of the surveillance
system has to review every bite of information to find
the parts where the incident is recorded. Since a static
camera is used for video surveillance in most cases,
a lot of the information recorded is redundant such as
the background of the scene and when nobody is in the
scene. The reviewing of such redundant information
can create a loss of time with dramatic consequences.
Also the system often fails to record very important in-
formation such as frontal face because of its low frame
rate.

To overcome such drawbacks of the current surveil-
lance system, we should develop a method to retrieve
scenes where some moving objects are recorded. Also
an efficient video compression algorithm has to be de-
veloped to increase its frame rate and reduce the re-
quired storage.

For a case of static camera, a typical approach to
detect moving objects is background subtraction. If
there are some moving objects in the current image,
the differences at the points corresponding to the mov-
ing objects become large. The moving objects can be
easily detected by thresholding the differences. In real-
istic situation, however, the background may gradually
or suddenly change because of the day light changes
or movements of the equipments, etc. To treat such
changes in the background, the adaptive background
estimation method has been proposed by one of au-
thors [1, 2]. In [3] a method is proposed to use Gaus-
sian Mixture Models with pixel values to modelize the
background.

In this paper we address the problem of recording
and retrieving scenes of interest from a static cam-
era for a video surveillance system. Here we consider
sequences of local blocks instead of sequences of pixel
values in the case of background subtraction. To model

a sequence of a local block, we use an adaptive vector
quantizer (AVQ). By applying a vector quantizer to a
sequence of a local block, we can represent the sequence
by some of code vectors (codebook). This corresponds
to modeling multiple backgrounds appearing in the se-
quence. Then novelty of a new block can be easily
detected by checking the distances between the new
block and the code vectors. This makes moving object
detection possible. Also by representing the sequence
using a codebook the required storage is reduced and
approximation of all blocks in the sequence can be re-
generated from the stored codebook. To maintain in-
formation on the current background, the code vectors
are stored in a stack in the order of the occurrences.
Also a small memory of its history is assigned to each
code vector of the codebook allowing a forgetting fac-
tor of the vector when it has not been used for a long
time.

We also present a method to remove noise from the
scene such as flickering by monitoring the codebook
evolution through time.

2 Adaptive Vector Quantization
of Sequences of Local Blocks

A frame in video can be divided into small local blocks
M = B x B pixels (Usually B = 4 or 8). Then a
sequence of frames in video can be viewed as a set of
sequences of local blocks. We assign a vector quan-
tizer for each block and each of the sequences of local
blocks is modeled by using the vector quantizer. By
applying a vector quantizer to a sequence of a local
block, we can represent the sequence by some of code
vectors (codebook). This means that we can model
multiple backgrounds appearing in the sequence by its
code vectors. Then novelty of a new block can be eas-
ily detected by checking the distances between the new
block and the code vectors. This makes moving object
detection possible. Also by representing the sequence
using a codebook the required storage is reduced and
approximation of all blocks in the sequence can be re-
generated from the stored codebook.

To maintain information on the current background,
the code vectors are stored in a stack in the order of
the occurrences. Also a small memory of its history is
assigned to each code vector of the codebook allowing

343

a forgetting factor of the vector when it has not been
used for a long time. These mechanisms make the
vector quantizer adaptive.

2.1 Adaptive Vector Quantization

Vector quantization (VQ) is used mainly for data com-
pression [4, 5]. Let T be the set of all possible vec-
tors for a task. Assume that T is separated into K
distinct regions (clusters) that exhaust T' and each
of the regions is assigned a vector called code vector
0y, (k=1,...,K). Then, given a € T, we can deter-
mine the region where it belongs to and we can adopt
the corresponding code vector instead of the original
vector x. If the code vectors do not change during the
task, they can be specified by some codes. This re-
duces the amount of storage required to represent the
original contents.

In [6], the authors used Adaptive Vector Quantiza-
tion for video compression. A frame is divided in L
blocks of M = B x B pixels (Usually 4 or 8). A global
codebook is created for the full frame. If a good match
is found, then the codebook is not changed, and the
block from the codebook is used for approximation.
If no good match exists, then a new vector is created
from the block and added to the codebook while an-
other one is removed. This method works well for video
compression or tele-conference system.

In this paper, instead of using a codebook for the
whole frame, we prepare L independent vector quantiz-
ers and one vector quantizer is assigned to each block.
Their codebooks (code vectors) are maintained inde-
pendently.

Let {$§l)}§=1 be a sequence of local block [(I =
1,...,L). Then a set of code vectors {Og)}fz(ll) is pre-
pared for the block I, where K is the number of clus-
ters in the vector quantizer assigned to the block [.
When we use the mean squared errors

l l l l
ED@OY,....00) =" =) — 61> (1)

iec!

as distortion measure to design a vector quantizer, then
the optimum code vectors can be obtained as

S al 2)

iec

1
o) _
k N}gl)

where C']il) is the £(M-th cluster and N,El) is the number

of vectors assigned to the cluster C,(cl).

When a new frame is captured, novelty of each block
in the frame is checked and the corresponding vector
quantizer is updated. Let mﬁféw the block [in the new
frame. The distances between the block :c,(fgw and the
code vectors 055) are computed. If the minimum dis-
tance is smaller than a pre-specified threshold Th, the
block is similar with one of the previously appeared
block in the sequence. Assume that the minimum dis-
tance is obtained to the cluster C,(Cl). Then the corre-

sponding code vector is updated by

0y 1 OP10) !
0 :W{Nk 6, +=),} (3)

If the minimum distance is larger than the threshold
Th, the block is considered as new and a new code
vector is created in the vector quantizer.

2.2 Codebook and stack

To maintain order of occurrences in a sequence of
blocks, code vectors of each vector quantizer are main-
tained in a stack. Figure 1 outline the typical behavior
of a codebook stack. At first the stack is initialized
with the code vector obtained from the first frame.
Then using the Adaptive Vector Quantizer algorithm
explained in the previous section, at each frame, nov-
elty of the block 2\, is checked. If the block is new,
then the new code vector mﬁfﬁw is added to the top of
the stack. This is shown at £ 4+ 1 in in Figure 1. The
code vector D is added to the top of the stack. If the
block :cggw is similar with one of the code vectors, the
code vector is put on the top of the stack and it’s values
are updated by using the equation (3). This is shown
at t + 2 in Figure 1. In this figure, the code vector A
is moved on the top of the stack.

t ot
] (2]
2] [c
4] =

Henar
block

Eottom

Figure 1: AVQ stack

2.3 Forgetting factor and history

To maintain frequencies of occurrences of the similar
blocks, we also associated a counter to each code vector
in a vector quantizer. Each time a vector is updated,
the counter value is increased by one. Otherwise, its
value is decrease by one.

The purpose of this counter is mainly to provide a
forgetting mechanism to the stack. This system is in-
troduced to allow to forget old code vectors that have
not been updated for a long time. For example, if
someone moved a chair in a room, the blocks located
at the previous position of the chair have to be re-
moved from the stacks if the chair is not put back to
it’s previous position.

Forgetting mechanism implemented in the current
system is very simple. When a counter reach zero, its
vector is removed from the stack. When a new vector is
added to a stack, the counter should not be initialized
at 1, because often noise happen, and a block initial-
ized at 1 would probably disappear at the next frame.
A value of 10 has proven to be enough to overcome
such problem. We have also defined an upper bound

344

for the counter. This is to prevent an ’over-learning’
of a vector. For example if an object in the scene stay
for a very long time, say 10000 frames, it would take
the same amount of frames to forget it when it would
have moved. A high value allows to keep the value of
the background even when an object stay stationary
hide the background for a long time.

When using the counter with the stack, it is possible
to recall the history of a block. Compared to tradi-
tional background extraction methods such as [1, 2],
this mechanism gives an improvement toward efficient
tracking of multiple backgrounds. Because traditional
background extraction can only keep one background
that slowly adapt with time. Our method can instantly
adapt to any change and also can keep in memory the
previous value of the background. If the change is only
temporary, we can recover the recent background from
the stack. With time the old background is forgotten
and only new backgrounds are kept in the stack. We
can also backtrack the moving objects in the frames by
accessing the vectors in the codebooks of each block.

3 Experimental result

We tested the algorithm on various stream of images.
Table 1 lists the information from the two main videos
used in the experiments. Pokemon is the record of a
scene where an object (pokemon figure) is put at the
center of the frame and then the camera is suddenly
paned. This video was used to test the behavior of the
algorithm in case of sudden change of the scene back-
ground. TeaRoom is a one hour-video extracted from
a 24-hour video monitoring of a meeting room. The
TeamRoom is an uncontrolled environment with day,
night, and everyday situations (ex: people entering,
leaving and staying at the same spot for long time).
Every video has been recorded at 30 frames-seconds.

Table 1: Video information

Video Size Frames | Duration
Pokemon | 320x240 3001 1 mins 30
TeaRoom | 640x480 | 103950 60 mins

Figure 2 shows some frames sampled from the Tea-
Room video. Someone come inside the room, take a
book, read a few pages of it, and then leave.

Figure 2: Samples frames

3.1 Scene detection

By monitoring the activity of the vector quantizers of
the frame, scenes of interest with moving objects can
be detected. When something is moving inside the
scene, new vectors are created or old ones are recalled.
A simple thresholding allow to start, and stop, the
recording of frames while moving objects are detected.

We define the measure of activity (MA) of the vector
quantizers for a frame at time ¢ has

MA=Y"CV+UV, (4)
leL

where C'V is the number of created vectors, and UV
is the number of updated vectors.

Figure 3 shows the typical behavior of the mea-
sure of activity M A when someone enters the room
(frame 137), stays for sometimes, and leaves (frame
240). After that no one enter the room for sometimes.
If the measure of activity of the vector quantizers of
the frame is higher than 0, then the system records the

frames. A higher threshold could be used to record
25 T T T T T T
a0l created + updated

M
sl [
A

A
Jl ‘wlflfrh.l JI \‘wI‘ Ll'rw“'ﬂhmll".

i}
140 160 1a0 200 220 240 260

jm'dr '|J"m\ "

Figure 3: Measure of activity

only large activity, such as recording heavy traffic on
road while discarding light traffic, or people when they
are close enough to the camera. The system is working
in real-time on a Pentium 4 2Ghz processor.

3.2 Fast access

Previously we have shown how to record only scene of
interest for the user. This fulfills one of our goal, but
another goal is to allow a fast access for the user to
those scenes of interest. While MPEG video format
allow for quick access using I-frames as reference ([7]),
it does not provide information about the relevance of
the scene recorded, or entry points to them. Using
MPEG, the user would have once again to review all
the recorded sequences one after another to find the
information he is looking for.

We designed a simple video coding-decoding format
based on the vector quantizers. Our coding algorithm
record the time lap between two recorded frames, then
for each recorded frames, we only saved the activity of
the vector quantizers. When a new vector is added,
we save its information with the codec. When a vector
is updated, only its code is transmitted. The decoder
reads the information from the file, and updates its
vector quantizers according to it.

For demonstration purpose, we designed a simple
interface using the decoder to provide quick access to
the interesting sequences where some moving objects
were recorded. The system read the file, and each time
a step between two frames is higher than a threshold S
a new sequence start. For each sequence, a thumbnail

345

of the first frame is extracted, and can be used as a

fast access point. Figure 4 show the interface, with

NHova HEx
Eie |

Figure 4: Quick access interface

the quick access points on the left side, and the main
display window on the right side. A user can click on
the thumbnail on the right side, and instantaneously
the video will start to play on the left side starting
from the frame clicked by the user.

3.3 Treatment of flickering

In real situation, flickering introduces a lot of noise in
the frames and may creates changes strong enough to
trigger the recording of frames even when there is no
object of interest. To prevent this, a simple mecha-
nism to monitor the activities in the vector quantizers
is implemented in the current system. After moni-
toring the codebooks activity, it has been found that
flickering usually appear in the form of two vectors ro-
tating in the codebook. In case of flickering, at time
t, a vector A is activated. At ¢ + 1, another vector
B is activated. At time ¢t + 2, the vector A is once
again activated, and so on. This is the simplest case
of flickering. To remove such effects, activated vec-
tors in the stack through time are recorded to define
a pattern of a predefined size. Then we search if this

J Il Il J J J J Il
I T T T T T T I T T T I T
1 1
i MENMOry sSize lpattern sizg

|

1

1

wB A !
p|c|e|Bla|Bla|elalB|alB|a]
1

|

joriginal signa i
1 1
1

1

1
]]
lolc|e|elalelalslalsalala
stabilized =signal

Figure 5: Noise Removal

pattern is already observed in the immediate past of
the sequence. If such pattern is found, then we decide
that there is flickering, and force the vector quantizer
to keep the same vector always activated until some-
thing break the pattern, like someone passing in front
of it. Figure 5 shows the typical behavior of the noise
removal algorithm.

3.4 Results of the compression

Our goal is to provide an algorithm that can help the
user to quickly find what he is looking for, while keep-
ing all important information in a minimum of storage.
Table 2 show the results of the proposed Adaptive Vec-
tor Quantization compared to traditionnal continual
recording of all frames.

Table 2: Comparison of performance

Video A B C D
Pokemon 3001 375 39 Mb 5.7 Mb
TeaRoom | 103950 | 26375 | 1322 Mb | 42 Mb

In this table, A is the original number of frames, B
is the number of frames recorded by our method. C' is
the original MPEG file size, D is the final size using
our encoder. In the current method, the original block
is stored as it is. Although there is no optimization
for compression, the required storage of the proposed
method is less than the standard video compression
method. The reason is that our method recordes only
the information of the moving objects in the scene of
interest. We used no compression algorithm at all, only
the raw data of the blocks are stored. With the help
of a simple interface, using the AVQ compression al-
gorithm to create access points to the recorded scenes,
instantaneous retrieval speed is achieve. Our proposed
method offer a practical and fast way to search for
scenes of interest recorded using the AVQ algorithm,
while providing high compression rate.

References

[1] Shimai H, Mishima T, Kurita T, and Umeyama S.
Adaptive background estimation from image sequence
by on-line m-estimation and its application to detection
of moving objects. Proc. of Workshop on Real-Time
Image Sequence Analysis (RISA2000), pages 99-108,
2000.

[2] Pic M, Berthouze L, and Kurita T. Adaptive back-
ground estimation: Computing a pixel-wise learning
rate from local confidence and global correlation val-
ues. IEICE Trans. Inf and Syst, E87-D(1):50-57, Jan
2004.

Stauffer C and Grimzon E. Adaptive background mix-
ture models for real-time tracking. Proc. of CVPR99,
2:246-252, 1999.

[4] Gray R M. Vector quantization. IEEE ASSP Mag.,
1:4-29, Apr 1984.

Linde Y, Buzo A, and Gray R M. An algorithm for
vector quantizer design. IEEE Trans. Commun., COM-
28(1):84-95, Jan 1980.

Dietmar S and Bernd B. Real-time very low bit rate
video coding with adaptive mean-removed vector quan-
tization. IEEE International Conference on Image Pro-
cessing (ICIP’97), Santa Barbara, Oct 1997.

ISO. Information technology — coding of moving pic-
tures and associated audio signal for digital storage
median at up to about 1,5 mbit/s — part 2: Video.
ISO/IEC 11172-2, 1993.

3

[5

6

7

346

