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A b stra c t

We present a cognitively-controlled vision system that com-
b ines low -level ob ject recognition and track ing w ith high-level
symb olic reasoning for the pu rpose of solving diffi cu lt space
rob otics prob lems—satellite rendez vou s and dock ing. T he rea-
soning modu le, w hich encodes a model of the environment,
performs delib eration to 1 ) gu ide the vision system in a task -
directed manner, 2 ) activate vision modu les depending on the
progress of the task , 3 ) validate the performance of the vision
system, and 4 ) su ggest corrections to the vision system w hen
the latter is performing poorly. R easoning and related ele-
ments, among them intention, contex t, and memory, contrib u te
to improve the performance (i.e., rob u stness, reliab ility, and
u sab ility). We demonstrate the vision system controlling a ro-
b otic arm that au tonomou sly captu res a free-fl ying satellite.
C u rrently su ch operations are performed either manu ally or
b y constru cting detailed control scripts. T he manu al approach
is costly and ex poses astronau ts to danger, w hile the scripted
approach is tediou s and error-prone. T herefore, there is su b -
stantial interest in performing these operations au tonomou sly,
and the w ork presented here is a step in this direction. T o ou r
k now ledge, this is the only satellite-captu ring system that re-
lies ex clu sively on vision to estimate the pose of the satellite
and can deal w ith an u ncooperative satellite.

1 I ntrod u c tion

S inc e the earliest day s of the fi eld, c omputer v ision
researc hers hav e strug g led w ith the c halleng e of effec -
tiv ely c omb ining low -lev el v ision w ith artifi c ial intelli-
g enc e. S ome of the earliest w ork inv olv ed the c omb i-
nation of imag e analy sis and sy mb olic A I to c onstruc t
autonomous rob ots [1 , 2 ] . These attempts met w ith lim-
ited suc c ess b ec ause the v ision prob lem is hard. The fo-
c us of v ision researc h shifted from v ertic ally - integ rated,
emb odied v ision sy stems to low -lev el, stand-alone v ision
sy stems. C urrently av ailab le low - and medium-lev el v i-
sion sy stems are suffi c iently c ompetent to support sub -
seq uent lev els of proc essing . C onseq uently , there now is
renew ed interest in hig h-lev el, or c og nitiv e v ision, w hic h
is nec essary if w e are to realize autonomous rob ots c apa-
b le of performing useful w ork . In this paper, w e present
an emb odied, task -oriented v ision sy stem that c omb ines

ob jec t rec og nition and trac k ing w ith hig h-lev el sy mb olic
reasoning . The latter enc odes a sy mb olic model of the
env ironment and uses the model to g uide the v ision sy s-
tem in a task -direc ted manner.

W e demonstrate the sy stem g uiding a rob otic manipu-
lator during a satellite serv ic ing operation inv olv ing ren-
dezv ous and doc k ing w ith a moc k up satellite under lig ht-
ing c onditions similar to those in orb it. O n-orb it satel-
lite servicing is the task of maintaining and repairing a
satellite in its orb it. I t ex tends the operational life of
the satellite, mitig ates tec hnic al risk s, and reduc es on-
orb it losses. H enc e, it is of partic ular interest to mul-
tiple stak eholders, inc luding satellite operators, manu-
fac turers, and insuranc e c ompanies. C urrently , on-orb it
satellite serv ic ing operations are c arried out manually ;
i.e., b y an astronaut. H ow ev er, manned missions usually
hav e a hig h pric e tag and there are human safety c on-
c erns. U nmanned, tele-operated, g round-c ontrolled mis-
sions are infeasib le due to c ommunic ations delay s, in-
termittenc e, and limited b andw idth b etw een the g round
and the serv ic er. A v iab le option is to dev elop the c a-
pab ility of autonomous satellite rendezv ous and doc k ing
( A R & D). M ost national and international spac e ag enc ies
realize the important future role of A R & D and hav e tec h-
nolog y prog rams to dev elop this c apab ility [ 3 , 4 ] .

A utonomy entails that the on-b oard c ontroller b e c a-
pab le of estimating and trac k ing the pose (position and
orientation) of the targ et satellite and g uiding the serv ic -
ing spac ec raft as it 1 ) approac hes the satellite, 2 ) maneu-
v er itself to g et into doc k ing position, and 3 ) doc k s w ith
the satellite. O ur v ision sy stem meets these c halleng es
b y c ontrolling the v isual proc ess and reasoning ab out
the ev ents that oc c ur in orb it— these ab ilities fall under
the domain of “ c og nitiv e v ision.” O ur sy stem func tions
as follow s: First, c aptured imag es are proc essed to esti-
mate the c urrent position and orientation of the satellite
(Fig . 1 ) . S ec ond, b ehav ior-b ased perc eption and memory
units use c ontex tual information to c onstruc t a sy mb olic
desc ription of the sc ene. Third, the c og nitiv e module
uses k now ledg e ab out sc ene dy namic s enc oded using the
situ ation calcu lu s to c onstruc t a sc ene interpretation. Fi-
nally , the c og nitiv e module formulates a plan to ac hiev e
the c urrent g oal. The sc ene desc ription c onstruc ted in the
third step prov ides a mec hanism to v erif y the fi nding s of
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Figure 1: Images observed during satellite capture. The left
and center images were captured using the shuttle bay cameras.
The right image was captured by the end-effector camera. The
center image shows the arm in hovering position prior to the
fi nal capture phase. The shuttle crew use these images during
satellite rendezvous and capture to locate the satellite at a dis-
tance of approximately 10 0 m, to approach it, and to capture it
with the Canadarm— the shuttle manipulator.

the vision system. The ability to plan allows the system
to handle unforeseen situations.

The performance of a cognitive vision system is
closely tied to the capabilities of its components: low-
level visual routines, short- and long-term memory
processing, and symbolic reasoning. Reliable low-level
visual routines are essential for meaningful higher-level
processing. E arly attempts at designing high-level vi-
sion systems failed precisely due to the lack of compe-
tent low-level visual algorithms. Consequently, the cog-
nitive vision system described in this paper depends upon
the reliable operation of the object recognition, tracking,
and pose-estimation routines. The cognitive vision sys-
tem is able to handle short-duration errors in the low-
level visual routines, such as momentary loss of tracking,
by using short-term memory facilities. It, however, can
not accomplish the task when the low-level vision algo-
rithms altogether fail to track the satellite, in which case
the high-level routines aborts the mission. We have not
proved the correctness of the reasoning module; how-
ever, it appears to meet the task requirements in practice:
autonomous and safe satellite rendezvous and docking.

To our knowledge, the system described here is
unique inasmuch as it is the only AR&D system that uses
vision as its primary sensor and that can deal with an
uncooperative target satellite. Other AR&D systems ei-
ther deal with target satellites that communicate with the
servicer craft about their heading and pose, or use other
sensing aids, such as radars and geostationary position
satellite systems [5].

1.1 Related Work

The state of the art in space robotics is the Mars E x-
ploration Rover, Spirit, that visited Mars [6] in 20 0 4.
Spirit is primarily a tele-operated robot that is capable
of taking pictures, driving, and operating instruments in
response to commands transmitted from the ground. It
lacks any cognitive or reasoning abilities. The most suc-
cessful autonomous robot to date that has cognitive abil-
ities is “ Minerva,” which takes visitors on tours through
the Smithsonian’s National Museum of American His-

tory; however, vision is not Minerva’s primary sen-
sor [7 ]. Minerva has a host of other sensors at its disposal
including laser range fi nders and sonars. Such sensors
are undesirable for space operations, which have severe
weight/energy limitations.

A survey of work about constructing high-level de-
scriptions from video is found in [8 ]. K nowledge mod-
eling for the purposes of scene interpretation can either
be hand-crafted [9 ] or automatic [10 ] (i.e., supported by
machine learning). The second approach is not feasible
for our application: It requires a large training set, which
is diffi cult to gather in our domain, in order to ensure
that the system learns all the relevant knowledge, and it
is not always clear what the system has learnt. Scene de-
scriptions constructed in [11] are richer than those in our
system, and their construction approach is more sound;
however, they do not use scene descriptions to control
the visual process and formulate plans to achieve goals.

In the next section, we explain the object recognition
and tracking module. Section 3 describes the high-level
vision module. Section 4 describes the physical setup
and presents results. Section 5 presents our conclusions.

2 O bject Recognition and T racking

The object recognition and tracking module [12]
processes images from a calibrated passive video
camera-pair mounted on the end-effector of the robotic
manipulator and computes an estimate of the relative po-
sition and orientation of the target satellite. It supports
medium and short range satellite proximity operations;
i.e., approximately from 20 m to 0 .2m.

During the medium range operation, the vision sys-
tem cameras view either the complete satellite or a sig-
nifi cant portion of it (left image in Fig. 2), and the system
relies on natural features observed in stereo images to es-
timate the motion and pose of the satellite. The medium
range operation consists of the following three phases:

• In the fi rst phase (model-free motion estimation),
the vision system combines stereo and structure-
from-motion to indirectly estimate the satellite mo-
tion in the camera reference frame by solving for
the camera motion, which is just the opposite of the
satellite motion [13].

• The second phase (motion-based pose acquisition)
performs binary template matching to estimate the
pose of the satellite without using prior informa-
tion [14]. It matches a model of the observed satel-
lite with the 3D data produced by the last phase and
computes a rigid transformation, generally compris-
ing 3 translations and 3 rotations, that represent the
relative pose of the satellite. The six degrees of free-
dom (DOFs) of the pose are solved in two steps.
The fi rst step, which is motivated by the observation
that most satellites have an elongated structure, de-
termines the major axis of the satellite. The second
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Figure 2: Images from a sequence recorded during an experi-
ment (left image at 5m; right at 0.2m)

step solves the four unresolved DOFs— the rotation
around the major axis and the three translations—
by an exhaustive 3D template matching over the re-
maining four DOFs.

• The last phase (model-based pose tracking) tracks
the satellite with high precision and update rate by
iteratively matching the 3D data with the model
using a version of the iterative closest point algo-
rithm [15]. This scheme does not match high-level
features in the scene with the model at every itera-
tion. This reduces its sensitivity to partial shadows,
occlusion, and local loss of data caused by refl ec-
tions and image saturation. Under normal opera-
tive conditions, model based tracking returns an es-
timate of the satellite’s pose at 2Hz with an accuracy
on the order of a few centimeters and a few degrees.

At close range, the target satellite is only partially vis-
ible and it can not be viewed simultaneously from both
cameras (the center and right images in Fig. 2); hence,
the vision system processes monocular images. The con-
straints on the approach trajectory ensure that the dock-
ing interface on the target satellite is visible from close
range, so markers on the docking interface are used to
determine the pose and attitude of the satellite effi ciently
and reliably at close range [12]. Here, visual features
are detected by processing an image window centered
around their predicted locations. These features are then
matched against a model to estimate the pose of the satel-
lite. The pose estimation algorithm requires at least 4
points to compute the pose. When more than four points
are visible, sampling techniques choose the group of
points that gives the best pose information. For the short
range vision module, the accuracy is on the order of a
fraction of a degree and 1mm right before docking.

The vision system can be confi gured on the fl y de-
pending upon the requirements of a specifi c mission.
It provides commands to activate/initialize/deactivate a
particular confi guration. The vision system returns a 4x4
matrix that specifi es the relative pose of the satellite, a
value between 0 and 1 quantifying the confi dence in that
estimate, and various fl ags that describe the state of the
vision system.

3 Cognitive Vision Controller

The cognitive vision controller controls the image
recognition and tracking module by taking into account

several factors, including the current task, the current
state of the environment, the advice from the symbolic
reasoning module, and the characteristics of the vision
module, including processing times, operational ranges,
and noise. It consists of a behavior-based, reactive per-
ception and memory unit and a high-level deliberative
unit. The behavior-based unit acts as an interface be-
tween the detailed, continuous world of the vision sys-
tem and the abstract, discrete world representation used
by the cognitive controller. This design facilitates a vi-
sion controller whose decisions refl ect both short-term
and long-term considerations.

3.1 P ercep tion and M emory : Sy mbolic Scene
Descrip tion

The perception and memory unit performs many crit-
ical functions. First, it provides tight feedback loops be-
tween sensing and action that are required for refl exive
behavior, such as closing the cameras’ shutters when de-
tecting strong glare in order to prevent harm. Second,
it corroborates the readings from the vision system by
matching them against the internal world model. Third,
it maintains an abstracted world state (AWS) that repre-
sents the world at a symbolic level and is used by the
deliberative module. Fourth, it resolves the issues of per-
ception delays by projecting the internal world model at
the current instant. Fifth, it performs sensor fusion to
combine information from multiple sensors; e.g., when
the vision system returns multiple estimates of the satel-
lite’s pose. Finally, it ensures that the internal mental
state refl ects the effects of egomotion and the passage of
time.

At each instant, the perception unit receives the most
current information from the active vision confi gurations
and computes an estimate of the satellite position and
orientation. In doing so, it takes into account contex-
tual information, such as the current task, the predicted
distance from the satellite, the operational ranges of var-
ious vision confi gurations, and the confi dence values re-
turned by the active confi gurations. An αβ tracker then
validates and smoothes the computed pose. V alidation is
done by comparing the new pose against the predicted
pose using an adaptive threshold.

The servicer craft sees its environment egocentrically.
The memory center constantly updates the internal world
representation to refl ect the current position, heading,
and speed of the robot. It also ensures that, in the ab-
sence of new readings from the perception center, the
confi dence in the world state should decrease with time.
The reactive module requires detailed sensory informa-
tion, whereas the deliberative module deals with abstract
features about the world. The memory center fi lters out
unnecessary details from the sensory information and
generates the AWS which describes the world symboli-
cally.
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3.2 Symbolic Reasoning: Planning and Scene
Interpretation

The symbolic reasoning module constructs plans to
accomplish goals and to explain the changes in the AWS.
The plan that best explains the evolution of the AWS is
an interpretation of the scene, as it consists of events that
might have happened to bring about the changes in the
AWS. The cognitive vision system monitors the progress
of the current task by examining the AWS, which is
maintained in real-time by the perception and memory
module. Upon encountering an undesirable situation, the
reasoning module tries to explain the errors by construct-
ing an interpretation. If the reasoning module success-
fully fi nds a suitable interpretation, it suggests appro-
priate corrective steps; otherwise, it suggests the default
procedure for handling anomalous situations.

The current prototype consists of two planners: Plan-
ner A specializes in the satellite capturing task and Plan-
ner B monitors the abstracted world state and detects and
resolves undesirable situations. We have developed the
planners in GOLOG, which is an extension of the sit-
uation calculus [16]. GOLOG uses logical statements
to maintain an internal world state (fl uents) and describe
what actions an agent can perform (primitive action pred-
icates), when these actions are valid (precondition pred-
icates), and how these actions affect the world (succes-
sor state predicates). GOLOG provides high-level con-
structs, such as procedure calls, conditionals, loops, and
non-deterministic choice, to specify complex procedures
that model an agent and its environment. The logical
foundations of GOLOG enable us to prove plan correct-
ness properties, which is desirable.

The planners cooperate to achieve the goal— safely
capturing the satellite. The two planners interact through
a plan execution and monitoring unit [17] to avoid the
undesirable artifacts of their interactions. Upon receiv-
ing a new “ satellite capture task” from the ground sta-
tion, the plan execution and monitoring module activates
Planner A, which generates a plan that transforms the
current state of the world to the goal state— a state where
the satellite is secured. Planner B, on the other hand,
is only activated when the plan execution and monitor-
ing module detects a problem, such as a sensor fail-
ure. Planner B generates all plans that will transform
the last known “ good” world state to the current “ bad”
world state. Next, it determines the most likely cause for
the current fault by considering each plan in turn (Algo-
rithm 1). After identifying the cause, Planner B suggests
corrections. In the current prototype, corrections consist
of “ abort mission,” “ retry immediately,” and “ retry after
a random interval of time” (the task is aborted if the total
time exceeds the maximum allowed time for the current
task). Finally, after the successful handling of the situa-
tion, Planner A resumes.

Algorith m 1 Find the most likely reason for the fault
1: Construct plans that account for the current error

conditions by using the knowledge encoded within
the error model.

2: Sort these plans in ascending order according to their
length. We do not consider the default plan, which
usually has a length of 1. For example, the plan
“ aBadCamera” in Fig. 3.

3: for all Plans do
4: Simulate plan execution; this consists of querying

the perception and memory unit, e.g., to determine
whether or not the Sun is in front of the cameras.

5: if The execution is successful. th en
6: The current plan is the most likely explanation.
7: Break
8: end if
9: end for

10: if No explanation is found th en
11: The default plan is the most likely explanation.
12: end if
13: Generate a solution based on the current explana-

tion; this requires another round of reasoning.
14: if The solution corrects the problem th en
15: Keep doing the current task.
16: else
17: Abort the current task and ask for user assistance.
18: end if

4 Results

We have tested the cognitive vision controller in a
simulated virtual environment and in a physical lab envi-
ronment that faithfully reproduces the illumination con-
ditions of the space environment— strong light source,
very little ambient light, and harsh shadows (Figure 4).
The physical setup consisted of the MDRobotics Ltd.
proprietary “ Reuseable Space Vehicle Payload Handling
Simulator,” comprising two Fanuc robotic manipulators
and the associated control software. One robot with the
camera stereo pair mounted on its end effector acts as
the servicer. The other robot carries a grapple fi xture-
equipped satellite mockup and exhibits realistic satellite
motion.

The cognitive vision controller met its requirements;
i.e., safely capturing the satellite using vision-based
sensing (see Fig. 2 for the kind of images used), while
handling anomalous situations. We performed 800 test
runs in the simulated environment and over 25 test runs
on the physical robots. The controller never jeopardized
its own safety or that of the target satellite. It gracefully
recovered from sensing errors. In most cases, it was able
to guide the vision system to re-acquire the satellite by
identifying the cause and initiating a suitable search pat-
tern. In situations where it could not resolve the error, it
safely parked the manipulator and informed the ground
station of its failure.
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aTurnon(_)

aLatch(_)

aErrorHandle(_)

aSensor(_,_)

aSearch(_)

aMonitor

aAlign

aContact

aGo(_,_,_)

aSatAttCtrl(_)

aCorrectSatSpeed

fStatus

fLatch

fSensor

fError

fSatPos

fSatPosConf

fSatCenter

fSatAlign

fSatSpeed

fSatAttCtrl

fSatContact

aBadCamera

aSelfShadow

aGlare

aSun(_)

aRange(_)

fSatPosConf

fSun

fRange

Initial State:

fRange(unknown),

fSun(unknown),

fSatPosConf(yes)

Goal State: fSatConf(no)

Initial State:

fStatus(off), fLatch(unarmed), fSensor(all,off),

fSatPos(medium), fSatPosConf(no), fSatCenter(no), fAlign(no),

fSatAttCtrl(on), fSatContact(no), fSatSpeed(yes), fError(no)

Goal State:

fSatContact(yes)

The Plan:

aTurnon(on), aSensor(medium,on), aSearch(medium), aMonitor,

aGo(medium,near,vis), aSensor(short,on), aSensor(medium,off),

aAlign, aLatch(arm), aSatAttCtrl(off), aContact

Explanation 1:  aBadCamera (Default)

Solution 1:  aRetry

Explanation 2:  aSun(front), aGlare

Solution 2:  aAbort

Explanation 3:  aRange(near),

aSun(behind), aSelfShadow

Solution 3:  aRetryAfterRandomInterval

Actions Fluents

Figure 3: Example plans generated by Planner A and Planner B.

Figure 4: The chaser robot captures the satellite using vision
in harsh lighting conditions like those in orbit.

5 Conclusion

Future applications of computer vision will require
more than just low-level vision; they will also have a
high-level AI component to guide the vision system in
a task-directed and deliberative manner, diagnose sens-
ing problems, and suggest corrective steps. Also, an AL-
ife inspired, reactive module that implements computa-
tional models of attention, context, and memory can act
as the interface between the vision system and the sym-
bolic reasoning module. We have demonstrated such a
system within the context of space robotics. Our practi-
cal vision system interfaces object recognition and track-
ing with classical AI through a behavior-based percep-
tion and memory unit, and it successfully performs the
complex task of autonomously capturing a free-fl ying
satellite in harsh environmental conditions. After receiv-
ing a single high-level “ dock” command, the system suc-
cessfully captured the target satellite in most of our tests,
while handling anomalous situations using its reactive
and reasoning abilities.

Acknow ledgments

The authors acknowledge the valuable technical con-
tributions of R. Gillett, H.K. Ng, S. Greene, J. Richmond,
Dr. M. Greenspan, M. Liu, and A. Chan. This work was
funded by MD Robotics Limited and Precarn Associates.

5

318



References

[1] L. Roberts, “ Machine perception of 3-D solids,” in Opti-
cal and E lectro-Optical Information P rocessing (J. Trip-
pit, D. Berkowitz, L. Chapp, C. Koester, and A. Vander-
burgh, eds.), pp. 159– 197, MIT Press, 1965.

[2] N. J. Nilsson, “ Shakey the robot,” Tech. Rep. 323, Arti-
fi cial Intelligence Center. SRI International, Menlo Park,
USA, 1984.

[3] J. Wertz and R. Bell, “Autonomous rendezvous and dock-
ing technologies— status and prospects,” in S P I E ’s 17 th
A nnual International S ymposium on A erospace/D efense
S ensing, S imulation, and Controls, (Orlando, USA), 21-
25 April 2003.

[4] O. Gurtuna, “ Emerging space markets: Engines of growth
for future space activities,” 2003. www.futuraspace.
com/EmergingSpaceMarkets fact sheet.
htm.

[5] M. Polites, “An assessment of the technology of au-
tomated rendezvous and capture in space,” Tech. Rep.
NASA/TP-1998-208528, Marshall Space Flight Center,
Alabama, USA, 1998.

[6] J. P. L. NASA, “ Mars exploration rover mission home,”
2004. marsrovers.nasa.gov.

[7] W. Burgard, A. B. Cremers, D. Fox, D. Hahnel, G. Lake-
meyer, D. Schulz, W. Steiner, and S. Thrun, “ Experiences
with an interactive museum tour-guide robot,” A rtifi cial
Intelligence, vol. 114, no. 1-2, pp. 3– 55, 1999.

[8] R. J. Howarth and H. Buxton, “ Conceptual descriptions
from monitoring and watching image sequences,” Image
and V ision Computing, vol. 18, pp. 105– 135, 2000.

[9] M. Arens and H. H. Nagel, “ Behavioral knowledge rep-
resentation for the understanding and creation of video
sequences.,” in P roceedings of the 26 th G erman Con-
ference on A rtifi cial Intelligence (K I-20 0 3) (A. Gunther,
R. Kruse, and B. Neumann, eds.), (Hamburg, Germany),
pp. 149– 163, 15-18 September 2003.

[10] J. Fernyhough, A. G. Cohn, and D. C. Hogg, “ Construct-
ing qualitative event models autmatically from video in-
put.,” Image and V ision Computing, vol. 18, pp. 81– 103,
2000.

[11] M. Arens, A. Ottlik, and H.-H. Nagel, “ Natural language
texts for a cognitive vision system,” in P roceedings of
the 15 th E uropean Conference on A rtifi cial Intelligence
(E CA I-20 0 2) (F. van Harmelen, ed.), (Amsterdam, The
Netherlands), pp. 455– 459, IOS Press, 21-26 July 2002.

[12] P. Jasiobedzki, M. Greenspan, G. Roth, H. Ng, and
N. Witcomb, “ Video-based system for satellite prox-
imity operations,” in 7 th E S A Workshop on A dvanced
S pace Technologies for Robotics and A utomation (A S TRA
20 0 2), (ESTEC, Noordwijk, The Netherlands), 19-21 No-
vember 2002.

[13] G. Roth and A. Whitehead, “ Using projective vision to
fi nd camera positions in an image sequence,” in V ision
Interface (V I 20 0 0 ), (Montreal, Canada), pp. 87– 94, 14-
17 May 2000.

[14] M. Greenspan and P. Jasiobedzki, “ Pose determination
of a free-fl ying satellite,” in M otion Tracking and Object
Recognition (M TOR0 2), (Las Vegas, USA), 24-27 June
2002.

[15] P. Jasiobedzki, M. Greenspan, and G. Roth, “ Pose deter-
mination and tracking for autonomous satellite capture,”

in P roceedings of the 6 th International S ymposium on A r-
tifi cial Intelligence and Robotics & A utomation in S pace
(i-S A IRA S 0 1), (Montreal, Canada), June 2001.

[16] Y . Lespérance, R. Reiter, F. Lin, and R. Scherl, “ GOLOG:
A logic programming language for dynamic domains,”
J ournal of L ogic P rogramming, vol. 31, no. 1-3, pp. 59–
83, 1997.

[17] F. Z. Qureshi, D. Terzopoulos, and R. Gillett, “ The cog-
nitive controller: a hybrid, deliberative/reactive control
architecture for autonomous robots,” in Innovations in
A pplied A rtifi cial Intelligence. 17 th International Confer-
ence on Industrial and E ngineering A pplications of A r-
tifi cial Intelligence and E xpert S ystem (IE A /A I E 20 0 4)
(B. Orchard, C. Y ang, and M. Ali, eds.), vol. 3029 of
L ecture notes in A rtifi cial Intelligence, (Ottawa, Canada),
pp. 1102– 1111, Springer-Verlag, May 2004.

6

319




