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Abstract

This article proposes an approach for visual track ing
using multiple cameras with overlapping fields of view. A 

spatial and temporal recursive Bayesian filtering ap-

proach using particle filter is proposed to fuse image
sequences  of multiple cameras to optimally estimate the 

state of the system, i.e., the target’s location. An approxi-

mation method for importance sampling function and
weight update function is also proposed. Our results show 

that our algorithm is effective when complete occlusions

occur. This method can be used for data fusion for multi-

ple measurements in dynamic systems.   

1 Introduction

Occlusion is extremely difficult for a single camera 

system. Having realized the limitation of using a single
camera to track occluded objects, there is a trend to use 

multiple cameras. In this article, we focus on tracking 

moving objects using multiple cameras withoverlapping
fields of view in order to solve occlusion problem. We 

find thatocclusions in one camera may be differentiated in 

the field of view of another camera and fusing data from 
multiple cameras at different locations can deal with oc-

clusions in a particular camera. W e also find that particle

filter can automatically decide which particles (hypothe-

sis) are close to the true state by weight updates and 

resampling. This property can be used for data fusion of 

multiple cameras and occlusion problems in a particular
camera.  

1.1 Previous work

The particle filter is a sequential Monte Carlo filter and 

can be applied to solve nonlinear and non-Gaussian prob-

lem [1]. Gordon et al. [2] proposed the bootstrap filter to
implement the recursive Bayesian filter for nonlinear or

non-Gaussian state estimation. The required probability 

density of the state vector is represented as a set of ran-
dom samples, which are updated and propagated. The 

state vector xt evolves according to the state model  

),( 1 tttt wxfx −=       (1)

where ft is the state transition function and wt is a zero
mean, white-noise sequence. The measurement yt is re-

lated tothe state vector via the observation equation

),( tttt vxhy =   (2)

where ht is the measurement function and v t is a zero mean,

white-noise sequence. The available information at time 
step t is the set of measurements Yt={yi: i=1,…, t}. The

objective is to construct the probability density function of 

the current state vector xt, given all available information:
p(xt|Yt). In principle the Bayesian filtering consists of two

stages: prediction and update. The prediction stage is  
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Liu and Chen [3] presented a general sequential impor-

tance sampling framework for usingMonte Carlo methods 

to dynamic systems. Doucet [4] provided an overview of 

sequential simulation based methods for Bayesian filtering 

of nonlinear and non-Gaussian dynamic models.

The condensation algorithm [5] used “factored sam-
pling” to represent the probability distribution of possible

interpretations by a randomly generated sample set. The 

learned dynamical models propagate the random sample 
set over timetogether with visual observations. Isard and 

Black [6] combined the statistical technique of important 

sampling with the condensation algorithm. The general 
framework is described as Icondensation and is demon-

strated by a hand tracker which combines color

blob-tracking with a contour model. Okuma et al. [7] 

combined the strengths of two successful algorithms: par-

ticle filter and Adaboost to produce a mixed importance

sampling function.
An advantage of particle filter is to allow measurements

from the various sensors to be fused in the Bayesian 

framework even when no knowledge is available about 
their dependence. Thispoint is particularly useful for mul-

tiple cameras tracking. Perez et al. [8] introduce generic

importance sampling mechanisms for data fusion and
demonstrate the algorithm by fusing color with stereo 

sound or motion. Each of the three cues can be modeled 

by an appropriate data likelihood function and the inter-

mittent cues (sound or motion) are besthandled by 

generating proposal distributions from their likelihood

functions. Their method is applied in the fusion of multi-
ple cues (color and motion) and different types of sensors 

(camera and microphone).

1.2 Contributions

In this article, we use multiple cameras to track a mov-

ing object. Visual information obtained from cameras at 
different locations is fused to deal with the occlusion 
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problem in a particular camera. Two main contributions in 

this article are: 1) a spatial and temporal recursive Bayes-

ian filtering approach using Particle Filter for fusing
multiple cameras’ observations; 2) an approximation ap-

proach for the optimal importance sampling function and 

weight up date function.

2 A Spatial and Temporal Recursive 

Bayesian Filtering Using Particle Filter 

for Multiple Cameras

There are some assumptions  of our algorithm: 1) mult i-

ple cameras must have a common field of view ; 2) only

one target is tracked; 3) The target is detected in the first 
frame and the target model is known and constant during 

tracking. The last two assumptions can be removed by 

data association and adaptive appearance model in future 
work. At present we focus on data fusion of one target

from multiple cameras. The limitation of our algorithm is :

when occlusions occur, at least one camera can see the 
tracked target.

We propose a spatial and temporal recursive Bayesian 

filtering framework using particle filtering for fusing mul-
tiple observations from different locations and times. The 

fusion includes two types of information: 1) the fusion of 

observations from multiple locations at same time; 2) the 
fusion of the state of the previous time and observations of 

the current time. 

C is the number of cameras used. xt is the state of the 
system (e.g. the position and velocity of the moving ob-

ject) and c
ty  is the measurement from the c

th
 camera at 

the time t. C
tY

:1  are measurements from the 1
st

camera to 
the cth camera at the time t. C

tY
:1
:1 are sets of measurement

of C
tY

:1 from the time 1 to the time t, i.e.,
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Therefore, the tracking problem is reduced to an inference
problem and our objective is to construct the conditional

probability
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Similar to (4), t he update stage is
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We assume that the measurements are indepen dent of each

other given the state xt because these measur ements come 

from different cameras. Then (6) can be represented as:
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Similar to (3), t he state prediction stage is
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In [6], the optimal importance sampling function
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tt yxxp −  and the weight update function is
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function for mult iple cameras is
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Then the important weight is updated as
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There are two problems in the above algorithm. First, in 

the most situations, (9) is not available in a closed-form.

Second, (10) is easily affected by occlusions in a particu-
lar camera. We propose an approximation approach of our 

spatial temporal recursive Bayesian filtering algorithm.

The importance sampling function is approximated as:
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where 10 =∑ =
C
i iα  and the weight update function is ap-

proximated as 
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In our visual tracking task, xt is the state to be estimated,

i.e., the moving object's location. The observation from 
the c

th
 camera is a region

),,,( heightwidthtsx =

where (s, t ) is the coordinate of the top left corner of the 

bounding box of the moving object in image coordinate
and width and height  are respectively the width and height 

of the bounding box of the moving object in image coor-

dinate. The system dynamic equation is assumed as a
constant position model, 

ttt wxx += −1 (13)

where w t is a zero mean, Gaussian white noise. The ob-

servation equation

ttt vxy += (14)

where vt is a zero mean, Gaussian white noise.

We use the 16×16×16 bins color histogram as the met-

ric to update the weights of part icles. The likelihood 
function is similar with the Bhattacharyya coefficient us-

ing in the mean shift  algorithm [9]. The target model is a 

color histogram uq̂  where u is the color index. The ca n-
didate region of the n

th
 particles is the bounding box 

defined by the n
th
 particles. The color histogram of the 

candidate
)(n

tx  is )(ˆ )(n
tu xp . The color similarity metric 

is
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where m is the number of bins.

The coordinates of different cameras need be trans-

formed into a common coordinate. We use a simple affine 

transformation to transform the coordinate of one camera
into the coordinate of another camera, as follows:
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where (x',y') and (x,y) are respectively the image coordi-

nate of the first and second camera and a, b, c, d, tx, ty are 
transformation parameters.

The approximation approach of the spatial and temporal 

recursive Bayesian filtering for visual tracking and data 
fusion of multiple cameras is summarized in F igure 1.

Figure 1. An approximation algorithm of the spatial and 

temporal recursive Bayesian filtering for visual tracking of 
multiple cameras

3 Results

Our method described above is tested us ing the

PETS2001 data sequences [10]. The second PETS2001 
datasets have two image sequences of two cameras from 

different views. There are five landmarks in the

PETS2001 data where the three main paths meet. They are 
used to obtain the sixparameters of the affine transforma-

tion. The tracking algorithm is implemented in Matlab.

The number of particles is 50 in our experiments. 
The results using condensation for frame 293, 352, 465

are shown in Figure 2. The target model is initialized by 

manual selecting a target region. Figure 2(a) are the 
tracking results using only observations from the first 

camera while Figure 2(b) are the tracking results using

only observations from the second camera. As for the first 
camera, the human is total occluded by the tree and the 

tracking result is lost in frame 352. When the object ap-

pears again in frame 465, condensation  can not track it.As
for the second camera, condensation can accurately track 

the target. The measurements of the second camera pro-

vide more accurate observations than the measurements of 
the first camera when occlusions occur in the first camera.

(a) (b)

Figure 2. Tracking results using condensation for 

frame 293, 352 and 465

The experimental results using our data fusion algo-
rithm for frame 293, 352, 465 are shown in Figure 3. We

assume a uniform distribution for the weights of the im-

portance sampling function in (11). Therefore,

3/1
210 === ααα . Figure 3 (a) and (b) show data fu-

sion results using observations of both the first and second 

cameras. For frame 352, although some observations of 
the first camera are wrong, our tracking algorithm is still 

able to track the person in frame 352 using the observa-

tions of the other camera. When the person appears again 
in frame 465, our algorithm can localiz e it. The results

1. Initialize the target model uq̂ . Time t = 1.

2. For i = 1,…,C, use condensation algorithm to get
the observation i

tŷ  of the i camera. Transform

each observation i
tŷ  into a common coordinate

i
ty .

3. For n = 1,…,N , sampling )(~ n
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6. Resampling: For n = 1,…,N , sample an index j(n)

distribution according to discrete distribution with 

N elements satisfying
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8. t=t+1. Repeat step 2-7.
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show  that multiple cameras tracking and data fusion us ing

particle filter can fuse spatial and temporal measurements 

of multiple cameras and solve the occlusion problem in a 
particular camera. The trajectory of the occluded target 

can be recovered according to the observations of another 

camera.

(a) (b)

Figure 3. Tracking and data fusion results using 

part icle fi lter for frame 293, 352 and 465

4 Conclusion

This article proposed an approach for visual tracking 

using multiple cameras with overlapping fields of view. A 

spatial and temporal recursive Bayesian filtering using 
particle filter for fusing multiple measurements was pre-

sented. The approximation approach in the

implementation showed that our approach can automat i-

cally recover the trajectory of the completely occluded 

target. There are many future works. We are going to relax

the assumptions of our algorithm so that we can track 
multiple targets and use adaptive appearance model. We 

will also extend our work to deal with multiple cues in an

image such as contour, motion and color et c. and multiple 
modal ities of sensors such as camera, ultrasonic, infrared 

and microphone etc. to achieve reliable tracking in various 

conditions.
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