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Abstract

This study concentrates on locating fine sparse details from
images. A statistical model for fine and sparse details was
developed for the histogram and spatial representation. In
experiments, artificial data was generated by using the sta-
tistical model and several thresholding methods were com-
pared. The result was verified by using real images from
IGT picking paper printability assessment, where small pa-
per surface defects must be detected. Based on the experi-
ments with artificial data and real images, it seems that the
minimum error thresholding by Kittler and Illingworth out-
performs the other methods.

1 Introduction

Binary thresholding is one of the most commonly used, and
essential operations in digital image processing. In many
image processing applications, thresholding is used at some
point of the algorithm. Although thresholding operation it-
self is simple, it remains as a very important research topic
[6] because new problem characteristics are continuously
encountered in practical problems.

Most of the existing methods perform well when the im-
age foreground and background constitute areas of suffi-
ciently equal sizes, and the gray-level values have substan-
tially non-overlapping distributions [6]. However, when ei-
ther or both of the assumptions are not met, major diffi-
culties can be encountered. This is the case in this study
where the motivation comes from a problem where small
paper surface defects must be automatically detected [1].
One such application is IGT picking assessment, which is a
de facto standard for paper printability (runnability) evalu-
ation in paper and printing industry. The assessment is per-
formed on test printed paper samples. Number of defects in
test images is typically very small making their gray-level
histograms almost unimodal. Additionally, gray-level val-
ues of both defects and surface overlap significantly. Spatial
distribution of the defects can be considered as random, and
thus, there is motivation to apply general adaptive thresh-
olding methods for detection of such fine and sparse details
in images.

In this study, the problem of adaptive thresholding to
segment fine and sparse details is considered. To find the
most suitable method for the given task, well-known and
well-performing general adaptive thresholding methods and
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methods specialized to unimodal histograms were com-
pared. Based on these experiments, it is our goal to build
a machine vision system that will automate the defects de-
tection from IGT samples.

2 Fine and sparse details on non-textured
noisy background

Motivations and possible application areas for methods to
detect fine and sparse details are explained first. In this par-
ticular case, the problem was to automatically perform the
visual assessment of IGT picking samples. An IGT picking
device prints a test pattern on a paper or a board sample.
The number of visible defects, e.g., fiber puffing or coating
tearing, provide information about printing properties of a
particular paper type (printability and runnability) [1]. To
acquire image data, strips of paper and board are digitally
photographed under oblique lighting (Fig. 1) [1].
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Figure 1: (a) IGT sample (coated board); (b) after prepro-
cessing. Images (a) and (b) are divided into 3 pieces from
top to bottom for better presentation; (b) gray-level his-
togram of preprocessed sample.

In Fig. 1(a), the defects are not clearly visible, and
the imaging suffers from distortions characteristic to board
strips (e.g., curliness) and therefore it is necessary to en-
hance the original image by convolving a spot detector. The
enhanced image can be seen in Fig. 1(b). The histogram of
the enhanced image (Fig. 1(c)) is still unimodal thus mak-
ing it hard to find a suitable threshold which separate small
defects. Defects in the enhanced image appear as tiny spots
having higher intensity than the surrounding non-textured
noisy background.



For further processing, however, a suitable threshold
value at which defects on paper surface begin to appear
in the foreground must be selected. Based on a set of test
samples, it was found out that the proportion of pixels rep-
resenting defects was 0.5-3.0% of total imaging area, and
they partly shared intensity values with background pixels.
Thus, the background and foreground are scrambled into a
nearly unimodal gray-level histogram making the selection
of threshold value a very difficult problem.

The nature of the defects, and their presence in the given
problem motivated us to introduce the notion of fine and
sparse defects. It should be noted that the words details and
defects are used interchangeably in this study. The fine and
sparse defects are small (fine) and isolated (sparse) signal
patches comprising only a minority of the total image size.
Their intensities are close to or mixed with the background
intensity range. To study the problem analytically, a sta-
tistical model of sparse defects was prepared first. Based
on this statistical model, artificial data were generated for
method comparisons, and a suitable thresholding method
was selected. It was also necessary to visualize the statisti-
cal model to assure that the artificial data corresponds to the
real data.

2.1 Model for fine and sparse details

If spatial relationships are neglected, image pixels can be
considered as realizations of a random variable. For a suf-
ficiently large image, it’s gray-level histogram corresponds
to a probability density function of the random variable. In
this case, it is sufficient to model the probability density
function (pdf) to model the fine and sparse details.

The noisy background can be modeled with a single
probability density function, and foreground defects can be
treated by a set of probability density functions. Finally, the
pdf for fine and sparse details consists of a weighted sum of
pdfs for both the foreground and background.

Intensities of background pixels can be modeled by val-
ues of a random variable having the normal distribution
N (up, op) with the mean value py,, and standard deviation
op. Defects appear randomly in the spatial domain. Thus,
each defect can be modeled by a low probability (low a pri-
ori) random variable which adheres to the normal distribu-
tion
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where /14(7) and o4(¢) denote the intensity mean value and
standard deviation for the -th defect, and P,(%) corresponds
to the a priori probability to encounter the defect. However,
since a single defect is highly localized (concentrated near
to a single spatial location), the P;(¢) corresponds to a pro-
portional spatial size of the defect rather than a true a priori
probability. Correspondingly, the proportional spatial size
of the background is

Pa(i) ey

Py=1-> Pui). )

Now, the resulting histogram of fine and sparse defects on a
non-textured noisy background depends solely on the set of
parameters {p, 0p, 1q(2), 04(4), Py(¢)}. Finally, the com-
posite probability density function which defines the ex-
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pected shape of the histogram is
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To compare existing thresholding methods, different
types of histograms of sparse defects can be generated by
varying the parameters pip, 0p, 1q(i), 04(é) and Py(7). One
more consideration is the distribution of p4(2) and o4(3).
Probably the simplest class of sparse defects, which is actu-
ally similar to the ones encountered in picking images, has
a uniform distribution p4(i) ~ U(a,b), and standard de-
viation 04(¢) ~ N(ts,,0,,). The only difference is, that
in real picking samples the distribution of defects is not ac-
tually uniform because the defects start to appear at higher
running speeds as the printer accelerates. This is not a prob-
lem when generating the model since global processing is
used to detect the defects. This way it does not matter when
the defects start in the model or how they are distributed.

2.2 Model visualization

For the visualization, a model in the spatial domain that
corresponds to the model in the domain of gray-level his-
tograms must be defined. First, the image background is
generated using a random variable with the same distribu-
tion and parameters, u; and o, as described. Next, the
defects are randomly seeded on the noisy background. For
each defect, the area is derived in accordance with the total
image size and the proportional defect size P;(¢). Finally,
each defect area is altered with values of the correspond-
ing random variable, N(p4(i),04(7)). To vary also the
sizes of defects, the proportational area can be derived from
P;(i) = N(up,,0p,). It should be noted, however, that if
a certain foreground/background ratio is required, the pro-
portational sizes P;(¢) must be normalized to achieve the
requested ratio. Shapes of defects is generated randomly,
but the defect shape does not matter since images are pro-
cessed based on their gray-level statistics.

Now, using the histogram model and the visualisation
method, artificial images with fine and sparse details can be
generated. An example of an artificial image is shown in
Fig. 2.

Figure 2:
0.055, i

An artificial image (uy
1,...,100, pe,
foreground/background ratio = 0.015, up, = 5, op, = 3).

0.3, Op
= 0.01, oy, 0.002,

3 Candidate thresholding methods

Image segmentation is an important step in image analysis
for recognition of objects or details. The aim is to sepa-
rate different objects from each other. Segmentation can be
performed by using different gray-level thresholding tech-
niques.

First, the most popular and well-performing general-
purpose thresholding methods were applied, and secondly,



two methods designed esspecially for unimodal histograms
were studied.

3.1 General gray-level thresholding methods

General thresholding methods should perform well when
(i) the foreground objects and background constitute pro-
portionally same sizes in an image, and (ii) the gray-level
values of objects and background possess substantially dis-
tant and non-overlapping distributions. When these restric-
tions can be met, one of the most popular methods is Otsu’s
method [4], and furthermore, methods by Kittler and Illing-
worth [3] and Kapur et al. [2] have been shown to outper-
form many others in comparisons [6]. Thus, these methods
are good candidates as general thresholding methods for the
given problem. Next, these three methods will be briefly re-
viewed.

3.1.1 Kittler’s method

Kittler and Illingworth have proposed a thresholding algo-
rithm which is based on optimizing a Bayesian rule cost
function. In this method, it is assumed that the foreground
and background class conditional probability density fuc-
tions in an image are normally distributed. [3]

3.1.2 Otsu’s method

Otsu’s thresholding method is based on the idea of find-
ing a threshold value that minimizes the within-class vari-
ance of resulting foreground and background classes [4].
Otsu’s thresholding is one of the most widely used and cited
threshold estimation method.

3.1.3 Kapur’s method

A thresholding method based on entropy has been proposed
by Kapur et al. The method maximises class entropies,
which can be interpreted as measures of class compactness
and separability. When the sum of the two class entropies
reaches maximum the image is said to be optimally thresh-
olded. [2]

3.2 Unimodal histogram thresholding methods

Unimodal distributions are typically obtained when an im-
age consists mostly of large background area with small, but
significant foreground regions. The thresholding is more
difficult the more similar the objects and the background
gray-level values are, as is the case in fine and sparse de-
tails. Next, two unimodal thresholding methods are briefly
reviewed.

3.2.1 Tsai’s method

Tsai has introduced two similar approaches to image thresh-
olding using smoothed histograms [7]. The first approach
looks for peaks and valleys in the histogram smoothed with
a Gaussian kernel. The smoothing level is adjusted to make
the smoothed histogram to contain exactly the same num-
ber of peaks as the desired number of thresholding levels.
The valleys between the peaks are selected as the threshold
values. In the case where the number of peaks is less than
the desired number after using the smallest possible Gaus-
sian kernel for smoothing, additional threshold values are
selected as the maximums of curvature of the histogram.
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The second approach utilizing curvature is intended es-
pecially for unimodal histograms, and represents a custom
case of the first approach. In the case where only one peak
can be found in a histogram, the threshold value is selected
as intensity value at which the histogram reaches its maxi-
mum curvature.

3.2.2 Rosin’s method

Rosin’s thresholding is another method for the bilevel
thresholding in the case of unimodal histograms [5]. The
method assumes that there is one dominant population in
the image that produces one main peak located at the lower
end of the gray-level histogram relative to the second pop-
ulation. A straight line is drawn from the highest bin in the
histogram to the high end of the histogram. High end means
that the line finishes at the first empty bin following the last
filled bin, a threshold point is selected as a histogram index
that maximises the perpendicular distance between the line
and the point in the gray-level histogram.

This method lacks intuitive motivation. The theoretical
mathematical analysis shows that the method is almost in-
sensitive to foreground pixels, and it actually determines the
threshold value using only information about the dominat-
ing background [5].

4 Experiments

The experiments were conducted using both artificial data
derived from the statistical model and real data of IGT pick-
ing images. Using the artificial data, it was possible to pro-
duce quantitative results by computing proportions of de-
tails not detected, and falsely detected background. For the
real data, the comparison was done by visually comparing
the result images.

4.1 Artificial data derived from the model

With artificial data generated from the model in Section 2.1,
it was possible to evaluate how methods would perform
in separating details from background. Since the distribu-
tions of both foreground and background were known, it
was possible to calculate proportions of both distributions
that fall into the incorrect side of a given threshold value.
The proportions were computed as functions of the fore-
ground/background ratio which was selected to correspond
to the ratios of IGT picking images (0.1% — 5.0%).

The statistical model parameters used in the experiment
were up, = 0.30, 0, = 0.055, i = 1,...,50, waq(i)
U(0.50,0.80), 04(i) = N(pto,,00,) = N(0.01,0.002),
Examples of artificial histograms and images for two ex-
treme foreground/background ratios are shown in Fig. 3.
In Figs. 3(a) and 3(c) the number of defects was 5 and in
Figs. 3(b) and 3(d) number of defects was 200.

~

4.2 Results for different methods

With the artificial data, Otsu’s method completely failed
because it detected most of the background as foreground
(Fig. 4(b)), and Kapur’s method failed by missing a sig-
nificant amount of foreground defects (Fig. 4(a)). Tsai’s
method performed well for small amounts of defects but
became unstable when the foreground/background ratio ap-
proached to 0.05 (Figs. 4(a) and 4(b)). The selection be-
tween Kittler’s method and Rosin’s method would depend
on whether a large number of correct detections (sensitiv-
ity), or a small number of false detections (selectivity) is
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Figure 3: Model-generated histograms and the correspond-
ing artificial images: (a),(c) Foreground/background ratio
0.001; (b),(d) 0.05.

preferred. In the latter case, which tends to be a more ben-
eficial for this application, Kittler’s method should be used.
Kittler’s method is a general thresholding method, but it
seems to work also with nearly unimodal histograms.
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Figure 4: Detection results for artificial data: (a) propor-
tion of not detected foreground pixels, and (b) proportion
of falsely detected background pixels.

In the second experiment, a set of 22 IGT picking im-
ages were used to test the candidate methods. As a preced-
ing step to thresholding, image enhancement was applied
to the image. In Fig. 5 are shown an IGT picking image,
its enhanced version, and the images obtained by using the
thresholding methods. Validation of results was based on
visual inspection of sample images. Thresholding results
were comparable with the results obtained when the meth-
ods were used to threshold artificial data. Kittler’s method
seemed to work well with the real data also.
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5 Conclusions

In this study a model for images with fine and sparse de-
tails was given. The model was based on the statistics in
the image gray-level histogram domain. Artificial data were
derived from the model and several well-known and widely
used thresholding methods were studied to experimentally
evaluate which methods are the most promising to be used
in the detection of fine and sparse details.

The proposed model was aimed to explain characteris-
tics of the real problem where surface defects must be de-
tected from digital images taken from IGT picking assess-
ment samples. Based on the conducted experiments, Kit-
tler’s and Illingworth’s minimum error thresholding was se-
lected as the most suitable method for the given task.

Figure 5: Example of IGT picking image, and the thresh-
olding results. Images from the top are the original image
(top), enhanced image, result after Rosin’s, Tsai’s, Otsu’s,
Kapur’s, and Kittler’s method (bottom).
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