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Abstract

This study concentrates on locating fine sparse details from
images. A statistical model for fine and sparse details w as
dev eloped for the histogram and spatial representation. In
ex periments, artificial data w as generated b y using the sta-
tistical model and sev eral thresholding methods w ere com-
pared. The result w as v erified b y using real images from
IG T pick ing paper printab ility assessment, w here small pa-
per surface defects must b e detected. B ased on the ex peri-
ments w ith artificial data and real images, it seems that the
minimum error thresholding b y K ittler and Illingw orth out-
performs the other methods.

1 I n tro d u ctio n

B inary thresholding is one of the most commonly used, and
essential operations in digital image processing. In many
image processing applications, thresholding is used at some
point of the algorithm. A lthough thresholding operation it-
self is simple, it remains as a v ery important research topic
[6 ] b ecause new prob lem characteristics are continuously
encountered in practical prob lems.

M ost of the ex isting methods perform w ell w hen the im-
age foreground and b ack ground constitute areas of suffi-
ciently eq ual siz es, and the gray-lev el v alues hav e sub stan-
tially non-ov erlapping distrib utions [6 ] . H ow ev er, w hen ei-
ther or b oth of the assumptions are not met, major diffi-
culties can b e encountered. This is the case in this study
w here the motiv ation comes from a prob lem w here small
paper surface defects must b e automatically detected [1 ] .
O ne such application is IG T pick ing assessment, w hich is a
de facto standard for paper printab ility (runnab ility) ev alu-
ation in paper and printing industry. The assessment is per-
formed on test printed paper samples. N umb er of defects in
test images is typically v ery small mak ing their gray-lev el
histograms almost unimodal. A dditionally, gray-lev el v al-
ues of b oth defects and surface ov erlap significantly. S patial
distrib ution of the defects can b e considered as random, and
thus, there is motiv ation to apply general adaptiv e thresh-
olding methods for detection of such fine and sparse details
in images.

In this study, the prob lem of adaptiv e thresholding to
segment fine and sparse details is considered. To find the
most suitab le method for the giv en task , w ell- k now n and
w ell-performing general adaptiv e thresholding methods and
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methods specializ ed to unimodal histograms w ere com-
pared. B ased on these ex periments, it is our goal to b uild
a machine v ision system that w ill automate the defects de-
tection from IG T samples.

2 F in e an d sp arse d e tails o n n o n -te x tu re d
n o isy back g ro u n d

M otiv ations and possib le application areas for methods to
detect fine and sparse details are ex plained first. In this par-
ticular case, the prob lem w as to automatically perform the
v isual assessment of IG T pick ing samples. A n IG T pick ing
dev ice prints a test pattern on a paper or a b oard sample.
The numb er of v isib le defects, e.g., fib er puffing or coating
tearing, prov ide information ab out printing properties of a
particular paper type (printab ility and runnab ility) [ 1 ] . To
acq uire image data, strips of paper and b oard are digitally
photographed under ob liq ue lighting (F ig. 1 ) [ 1 ] .
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F igure 1 : (a) I G T sample (coated b oard); ( b ) after prepro-
cessing. Images (a) and (b ) are div ided into 3 pieces from
top to b ottom for b etter presentation; ( b ) gray-lev el his-
togram of preprocessed sample.

In F ig. 1 (a) , the defects are not clearly v isib le, and
the imaging suffers from distortions characteristic to b oard
strips (e.g., curliness) and therefore it is necessary to en-
hance the original image b y conv olv ing a spot detector. The
enhanced image can b e seen in F ig. 1 ( b ) . The histogram of
the enhanced image (F ig. 1 (c) ) is still unimodal thus mak -
ing it hard to find a suitab le threshold w hich separate small
defects. D efects in the enhanced image appear as tiny spots
hav ing higher intensity than the surrounding non-tex tured
noisy b ack ground.
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For further processing, however, a suitable threshold
value at which defects on paper surface begin to appear
in the foreground must be selected. Based on a set of test
samples, it was found out that the proportion of pixels rep-
resenting defects was 0 .5 -3.0 % of total imaging area, and
they partly shared intensity values with background pixels.
Thus, the background and foreground are scrambled into a
nearly unimodal gray-level histogram making the selection
of threshold value a very difficult problem.

The nature of the defects, and their presence in the given
problem motivated us to introduce the notion of fine and
s p ar s e defects . It should be noted that the words details and
defects are used interchangeably in this study. The fine and
sparse defects are small (fine) and isolated (sparse) signal
patches comprising only a minority of the total image size.
Their intensities are close to or mixed with the background
intensity range. To study the problem analytically, a sta-
tistical model of sparse defects was prepared first. Based
on this statistical model, artificial data were generated for
method comparisons, and a suitable thresholding method
was selected. It was also necessary to visualize the statisti-
cal model to assure that the artificial data corresponds to the
real data.

2.1 M o d e l fo r fi n e a n d s p a r s e d e t a ils

If spatial relationships are neglected, image pixels can be
considered as realizations of a random variable. For a suf-
ficiently large image, it’s gray-level histogram corresponds
to a probability density function of the random variable. In
this case, it is sufficient to model the probability density
function (pdf) to model the fine and sparse details.

The noisy background can be modeled with a single
probability density function, and foreground defects can be
treated by a set of probability density functions. Finally, the
pdf for fine and sparse details consists of a weighted sum of
pdfs for both the foreground and background.

Intensities of background pixels can be modeled by val-
ues of a random variable having the normal distribution
N(µb, σb) with the mean value µb, and standard deviation
σb. Defects appear randomly in the spatial domain. Thus,
each defect can be modeled by a low probability (low a pri-
ori) random variable which adheres to the normal distribu-
tion

Pd(i)
1√

2πσd(i)
e

−(x − µd(i))
2

2σd(i)2 (1)

where µd(i) and σd(i) denote the intensity mean value and
standard deviation for the i-th defect, and Pd(i) corresponds
to the a priori probability to encounter the defect. However,
since a single defect is highly localized (concentrated near
to a single spatial location), the Pd(i) corresponds to a pro-
portional spatial size of the defect rather than a true a priori
probability. C orrespondingly, the proportional spatial size
of the background is

Pb = 1 −
∑

i

Pd(i) . (2 )

Now, the resulting histogram of fine and sparse defects on a
non-textured noisy background depends solely on the set of
parameters {µb, σb, µd(i), σd(i), Pd(i)}. Finally, the com-
posite probability density function which defines the ex-

pected shape of the histogram is
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(3)
To compare existing thresholding methods, different

types of histograms of sparse defects can be generated by
varying the parameters µb, σb, µd(i), σd(i) and Pd(i). One
more consideration is the distribution of µd(i) and σd(i).
P robably the simplest class of sparse defects, which is actu-
ally similar to the ones encountered in picking images, has
a uniform distribution µd(i) ∼ U(a , b), and standard de-
viation σd(i) ∼ N(µσd

, σσd
). The only difference is, that

in real picking samples the distribution of defects is not ac-
tually uniform because the defects start to appear at higher
running speeds as the printer accelerates. This is not a prob-
lem when generating the model since global processing is
used to detect the defects. This way it does not matter when
the defects start in the model or how they are distributed.

2.2 M o d e l v is u a liz a t io n

For the visualization, a model in the spatial domain that
corresponds to the model in the domain of gray-level his-
tograms must be defined. First, the image background is
generated using a random variable with the same distribu-
tion and parameters, µb and σb, as described. Next, the
defects are randomly seeded on the noisy background. For
each defect, the area is derived in accordance with the total
image size and the proportional defect size Pd(i). Finally,
each defect area is altered with values of the correspond-
ing random variable, N(µd(i), σd(i)). To vary also the
sizes of defects, the proportational area can be derived from
Pd(i) = N(µPd

, σPd
). It should be noted, however, that if

a certain foreground/background ratio is required, the pro-
portational sizes Pd(i) must be normalized to achieve the
requested ratio. Shapes of defects is generated randomly,
but the defect shape does not matter since images are pro-
cessed based on their gray-level statistics.

Now, using the histogram model and the visualisation
method, artificial images with fine and sparse details can be
generated. An example of an artificial image is shown in
Fig. 2 .

Figure 2 : An artificial image (µb = 0.3, σb =
0.055, i = 1, . . . , 100, µσd

= 0.01, σσd
= 0.002,

foreground/background ratio = 0.015, µPd
= 5, σPd

= 3).

3 C andidate th resh olding m eth ods

Image segmentation is an important step in image analysis
for recognition of objects or details. The aim is to sepa-
rate different objects from each other. Segmentation can be
performed by using different gray-level thresholding tech-
niques.

First, the most popular and well-performing general-
purpose thresholding methods were applied, and secondly,
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two methods designed esspecially for unimodal histograms
were studied.

3.1 G eneral g ray -level th resh olding m eth ods

General thresholding methods should perform well when
(i) the foreground objects and background constitute pro-
portionally same sizes in an image, and (ii) the gray-level
values of objects and background possess substantially dis-
tant and non-overlapping distributions. W hen these restric-
tions can be met, one of the most popular methods is Otsu’s
method [4 ], and furthermore, methods by Kittler and Illing-
worth [3] and Kapur et al. [2] have been shown to outper-
form many others in comparisons [6]. Thus, these methods
are good candidates as general thresholding methods for the
given problem. Next, these three methods will be briefl y re-
viewed.

3.1.1 Kittler’s m eth o d

Kittler an d I llin g worth h ave p rop osed a th resh old in g alg o-
rith m wh ic h is based on op tim iz in g a B ayesian ru le c ost
fu n c tion . I n th is m eth od , it is assu m ed th at th e foreg rou n d
an d bac kg rou n d c lass c on d ition al p robability d en sity fu c -
tion s in an im ag e are n orm ally d istribu ted . [ 3 ]

3 .1 .2 O tsu ’s m eth o d

O tsu ’s th resh old in g m eth od is based on th e id ea of fi n d -
in g a th resh old valu e th at m in im iz es th e with in - c lass vari-
an c e of resu ltin g foreg rou n d an d bac kg rou n d c lasses [4 ] .
O tsu ’s th resh old in g is on e of th e m ost wid ely u sed an d c ited
th resh old estim ation m eth od .

3 .1 .3 Ka p u r’s m eth o d

A th resh old in g m eth od based on en trop y h as been p rop osed
by Kap u r et al. T h e m eth od m axim ises c lass en trop ies,
wh ic h c an be in terp reted as m easu res of c lass c om p ac tn ess
an d sep arability. Wh en th e su m of th e two c lass en trop ies
reac h es m axim u m th e im ag e is said to be op tim ally th resh -
old ed . [ 2 ]

3.2 U n im o d a l h is t o g r a m t h r e s h o ld in g m e t h o d s

U n im od al d istribu tion s are typ ic ally obtain ed wh en an im -
ag e c on sists m ostly of larg e bac kg rou n d area with sm all, bu t
sig n ifi c an t foreg rou n d reg ion s. T h e th resh old in g is m ore
d iffi c u lt th e m ore sim ilar th e objec ts an d th e bac kg rou n d
g ray-level valu es are, as is th e c ase in fi n e an d sp arse d e-
tails. N ext, two u n im od al th resh old in g m eth od s are briefl y
reviewed .

3 .2 .1 T sa i’s m eth o d

T sai h as in trod u c ed two sim ilar ap p roac h es to im ag e th resh -
old in g u sin g sm ooth ed h istog ram s [ 7 ] . T h e fi rst ap p roac h
looks for p eaks an d valleys in th e h istog ram sm ooth ed with
a G au ssian kern el. T h e sm ooth in g level is ad ju sted to m ake
th e sm ooth ed h istog ram to c on tain exac tly th e sam e n u m -
ber of p eaks as th e d esired n u m ber of th resh old in g levels.
T h e valleys between th e p eaks are selec ted as th e th resh old
valu es. I n th e c ase wh ere th e n u m ber of p eaks is less th an
th e d esired n u m ber after u sin g th e sm allest p ossible G au s-
sian kern el for sm ooth in g , ad d ition al th resh old valu es are
selec ted as th e m axim u m s of c u rvatu re of th e h istog ram .

T h e sec on d ap p roac h u tiliz in g c u rvatu re is in ten d ed es-
p ec ially for u n im od al h istog ram s, an d rep resen ts a c u stom
c ase of th e fi rst ap p roac h . I n th e c ase wh ere on ly on e p eak
c an be fou n d in a h istog ram , th e th resh old valu e is selec ted
as in ten sity valu e at wh ic h th e h istog ram reac h es its m axi-
m u m c u rvatu re.

3 .2 .2 R o sin ’s m eth o d

R osin ’s th resh old in g is an oth er m eth od for th e bilevel
th resh old in g in th e c ase of u n im od al h istog ram s [5]. T h e
m eth od assu m es th at th ere is on e d om in an t p op u lation in
th e im ag e th at p rod u c es on e m ain p eak loc ated at th e lower
en d of th e g ray-level h istog ram relative to th e sec on d p op -
u lation . A straig h t lin e is d rawn from th e h ig h est bin in th e
h istog ram to th e h ig h en d of th e h istog ram . H ig h en d m ean s
th at th e lin e fi n ish es at th e fi rst em p ty bin followin g th e last
fi lled bin , a th resh old p oin t is selec ted as a h istog ram in d ex
th at m axim ises th e p erp en d ic u lar d istan c e between th e lin e
an d th e p oin t in th e g ray-level h istog ram .

T h is m eth od lac ks in tu itive m otivation . T h e th eoretic al
m ath em atic al an alysis sh ows th at th e m eth od is alm ost in -
sen sitive to foreg rou n d p ixels, an d it ac tu ally d eterm in es th e
th resh old valu e u sin g on ly in form ation abou t th e d om in at-
in g bac kg rou n d [5].

4 E x p e r im e n t s

T h e exp erim en ts were c on d u c ted u sin g both artifi c ial d ata
d erived from th e statistic al m od el an d real d ata of IG T p ic k-
in g im ag es. U sin g th e artifi c ial d ata, it was p ossible to p ro-
d u c e q u an titative resu lts by c om p u tin g p rop ortion s of d e-
tails n ot d etec ted , an d falsely d etec ted bac kg rou n d . For th e
real d ata, th e c om p arison was d on e by visu ally c om p arin g
th e resu lt im ag es.

4 .1 A r t ifi c ia l d a t a d e r ive d fr o m t h e m o d e l

With artifi c ial d ata g en erated from th e m od el in S ec tion 2 .1 ,
it was p ossible to evalu ate h ow m eth od s wou ld p erform
in sep aratin g d etails from bac kg rou n d . S in c e th e d istribu -
tion s of both foreg rou n d an d bac kg rou n d were kn own , it
was p ossible to c alc u late p rop ortion s of both d istribu tion s
th at fall in to th e in c orrec t sid e of a g iven th resh old valu e.
T h e p rop ortion s were c om p u ted as fu n c tion s of th e fore-
g rou n d /bac kg rou n d ratio wh ic h was selec ted to c orresp on d
to th e ratios of IG T p ic kin g im ag es (0.1% − 5.0% ) .

T h e statistic al m od el p aram eters u sed in th e exp erim en t
were µb = 0.3 0, σb = 0.055, i = 1, . . . , 50, µd(i) ∼

U(0.50, 0.8 0), σd(i) = N(µσd
, σσd

) = N(0.01, 0.002 ),
E xam p les of artifi c ial h istog ram s an d im ag es for two ex-
trem e foreg rou n d /bac kg rou n d ratios are sh own in Fig . 3 .
I n Fig s. 3 (a) an d 3 (c ) th e n u m ber of d efec ts was 5 an d in
Fig s. 3 (b) an d 3 (d ) n u m ber of d efec ts was 2 0 0 .

4 .2 R e s u lt s fo r d iffe r e n t m e t h o d s

With th e artifi c ial d ata, O tsu ’s m eth od c om p letely failed
bec au se it d etec ted m ost of th e bac kg rou n d as foreg rou n d
(Fig . 4 (b)) , an d Kap u r’s m eth od failed by m issin g a sig -
n ifi c an t am ou n t of foreg rou n d d efec ts (Fig . 4 (a)) . T sai’s
m eth od p erform ed well for sm all am ou n ts of d efec ts bu t
bec am e u n stable wh en th e foreg rou n d /bac kg rou n d ratio ap -
p roac h ed to 0.05 (Fig s. 4 (a) an d 4 (b)) . T h e selec tion be-
tween Kittler’s m eth od an d R osin ’s m eth od wou ld d ep en d
on wh eth er a larg e n u m ber of c orrec t d etec tion s (sen sitiv-
ity), or a sm all n u m ber of false d etec tion s (selec tivity) is
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(a) (b )

(c ) (d )

Figure 3: M odel-generated histograms and the correspond-
ing artificial images: (a),(c) Foreground/background ratio
0.001; (b),(d) 0.05.

preferred. In the latter case, which tends to be a more ben-
eficial for this application, Kittler’s method should be used.
Kittler’s method is a general thresholding method, but it
seems to work also with nearly unimodal histograms.
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Figure 4 : D etec tion results for artifi c ial d ata: (a) p rop or-
tion of n ot d etec ted foregroun d p ix els, an d ( b ) p rop ortion
of falsely d etec ted b ac k groun d p ix els.

I n th e sec on d ex p erim en t, a set of 2 2 I G T p ic k in g im -
ages were used to test th e c an d id ate m eth od s. As a p rec ed -
in g step to th resh old in g, im age en h an c em en t was ap p lied
to th e im age. I n Fig. 5 are sh own an I G T p ic k in g im age,
its en h an c ed version , an d th e im ages ob tain ed b y usin g th e
th resh old in g m eth od s. Valid ation of results was b ased on
visual in sp ec tion of sam p le im ages. Th resh old in g results
were c om p arab le with th e results ob tain ed wh en th e m eth -
od s were used to th resh old artifi c ial d ata. K ittler’s m eth od
seem ed to work well with th e real d ata also.

5 C o n c lu s io n s

I n th is stud y a m od el for im ages with fi n e an d sp arse d e-
tails was given . Th e m od el was b ased on th e statistic s in
th e im age gray-level h istogram d om ain . Artifi c ial d ata were
d erived from th e m od el an d several well-k n own an d wid ely
used th resh old in g m eth od s were stud ied to ex p erim en tally
evaluate wh ic h m eth od s are th e m ost p rom isin g to b e used
in th e d etec tion of fi n e an d sp arse d etails.

Th e p rop osed m od el was aim ed to ex p lain c h arac teris-
tic s of th e real p rob lem wh ere surfac e d efec ts m ust b e d e-
tec ted from d igital im ages tak en from I G T p ic k in g assess-
m en t sam p les. B ased on th e c on d uc ted ex p erim en ts, K it-
tler’s an d I llin gworth ’s m in im um error th resh old in g was se-
lec ted as th e m ost suitab le m eth od for th e given task .

Figure 5: E x am p le of IG T p ic k in g im age, an d th e th resh -
old in g results. I m ages from th e top are th e origin al im age
(top ) , en h an c ed im age, result after R osin ’s, Tsai’s, O tsu’s,
K ap ur’s, an d K ittler’s m eth od ( b ottom ) .
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