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Abstract

The minimum description length approach can auto-

matic solve the point correspondence problem and give 

the better statistical shape models than those built by hand 

or equally spaced way. The current mdl approaches build 

the models only based on the segmented shapes without 

considering the local image structure and may place the 

markers at wrong places. This paper adds Cartesian dif-

ferential invariants to the Minimum Description Length 

Shape Models and uses it to get better models. 

1 Introduction 

Statistical models of shape and appearance have been 

used widely in image segmentation and interpretation. To 

construct such models, we require sets of labeled training 

examples. The labels consist of landmark points defining 

the correspondences between similar structures in each 

example across the set. The problem of establishing the 

‘correct’ correspondences is fundamental to the shape 

model building. The correspondences are often established 

by manual annotation, which is labor intensive and er-

ror-prone. To reduce the burden, several authors stated the 

correspondence problem as an optimization problem. 

Landmark points are altered and refined across all training 

examples until an objective function that measures the 

utility of the resulting model in minimized. 

Kotcheff and Taylor [1] describe an approach where the 

best model is defined in terms of ‘compactness’, as meas-

ured by the determinant of its covariance matrix. Although 

the method is workable, its objective function could not be 

rigorously justified and it was difficult to make the opti-

mization converge. To solve these problems, Davies [2, 3] 

defined a new objection function with a rigorous theoreti-

cal basis and described a new representation of 

correspondence. The automatic model optimization 

method of him is based on finding the set of dense corre-

spondences over a set of shapes that produce the 

‘simplest’ linear statistical shape model. A minimum de-

scription length (MDL) objective function is used to 

measure model complexity, and optimized numerically 

with respect to the correspondences. The basic idea is that 

‘natural’ correspondences give rise to simple explanations 

of the variability in the data. One shape example was 

chosen as a reference shape and the positions of its corre-

spondence points remained fixed throughout. The 

optimization process involved perturbing the locations of 

the correspondence points of each shape in turn optimiz-

ing the MDL objective function. Thodberg [4] proposed 

curvature as another salient piece of information. By add-

ing a term to the cost function expressing the mismatch of 

curvature features across the data set, the MDL approach 

can be fine-tuned. 

However, the above MDL approaches only concern on 

the shape characteristics without capturing the local image 

structure that can also be used in finding point correspon-

dences. This paper uses the differential structure of image 

to construct a vector of invariants over a range of scales at 

each node and add a CDICost term to the cost function. 

After the same optimization passes, our method estab-

lishes better point correspondence and the models 

generated by this approach suggest more specific and gen-

eralization ability. 

2 Statistical Shape M odels 

A statistical shape model is built from a training set of 

ns shapes, aligned to a common coordinate frame. Each 

shape, Si(i=1,… ns), can be represented by a set of n land-

marks. By concatenating the coordinates of the sample 

points, each shape can be represented by an np dimen-

sional shape vector xi. Principal Component Analysis 

(PCA) is then performed to define a set of axes that 

aligned with the principal directions of the data. A linear 

model of the form can now express the ith shape 

     m m

i i

m

ix x Pb x p b        (1) 

where x  is the mean shape vector, the columns of P 
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describe a set of orthogonal modes of shape variation, and

bi is the vector of shape parameters for the ith shape.

3 Minimum Description Length Shape 

Models

Davies et al. [2] derived an object function with favors

models that encode the training set most efficiently. The

correspondence problem is regarded as an optimization

problem. Point samples are altered and refined across all 

training shapes until an objective function is minimized.

The correspondence is optimized with respect to the

following costs:

1) The MDL cost of mark positions:

(1 log )
cut cut

m m

cut cut

DL

 (2)

2) The Node cost of the mark positions:

average target 2

i iNodeCost= ( )
(3)

m are the eigenvalues of a principle components de-

composition of landmark positions, cut is preset threshold;

ai
average and ai

target are average and target parameters for the

ith landmark.

Hans Henrik Thodberg [4] added the Curvature varia-

tion cost that expresses the mismatch of curvature features

across the data set. The curvatures can be weighted with a

factor and appended to the aligned position coordinates

and included in the PCA:

2

,

1 1
CurvatureCost=C ( )

N

mean

ir i

i r

k k
s

(4)

kir is the curvature at ith landmark on rth shape, ki mean

is the mean curvature at the ith landmark across all shapes,

s is the number of shapes and C is a weighting factor for 

this term.

4 The Cartesian Differential Invariants

Cost

To get better models, we use the differential structure of

the image to construct a vector of invariants over a range

of scales centered at each landmark. These vectors de-

scribe the local geometry around each landmark at a 

particular scale independently of translation and orienta-

tion.

We use a scaled set of differential operators to extract

the differential structure of the image. A complete, hierar-

chically ordered family of multiplicative scale-space 

kernels in D dimensions is given by the following set of

convolution filters: 

1 1... ... 0( ; ) ( ; ) | ( ; ) ,
n n

D

i i i iG x G x x n
   (5)

where

2

22
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( ; ) ( )
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x
G x exp

, is the linear partial

derivative operator:

...i ni i

1
...

n

n

i ix x

Let be a given image and let: D

be a

physically sensible inner scale for , then the local jet of

of order N at base point x and inner scale  can be

represented with respect to an arbitrary Cartesian coordi-

nate system by the set: 

1

2

...[ ]( , ) ( ; ) | ( ; ) , 0,...,
n

N

i iJ x L x x n N
 (6)

where is given by the convolution of1 ... ni iL
 with the

Gaussian derivative ... ( ; )
i ni iG x

:

1 1... ...( ; ) ( )( ; )
n ni i i iL x G x

(7)

The certain combinations of are known as Carte-

sian differential invariants [5], these combinations are 

independent of the choice of coordinate frame. The flow-

ing shows the set of 2D polynomial invariants to third

order:

1 ... ni iL

1 2

3 4

5 ( ) 6

7
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For each landmark of a training example, the above

Cartesian Invariants over a range of scales describe the

differential structure of the example independently of the

chosen Cartesian coordinate system. We can construct a 

vector CDI that represents the local image structure

around a given landmark over 3 scales ( =4, 5, 6). The

filter’s size are defined as *7, which will avoid signifi-

cant truncation, without wasting the outer taps on

near-zero values.

T

( , ) [ 1( 4), 2( 4),..., 8( =4),

1( 5), 2( 5),..., 8( =5),

1( 6), 2( 6),..., 8( =6)]

CDI x y I I I

I I I

I I I

(8)

For each landmark i: 
24

2

1

( )mean

i ik i

k

Cost CDI CDI

(9)

1

1 s
mean

i

k

CDI CDI
s

ik    (10)

Because there are N landmarks on each example, the 

total cost:

1

1 N

cdi j

j

CDICost C Cost
N (11)
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where Ccdi is a weighting factor for this term. After add-

ing CDICost to MDL, the cost of MDL becomes:

MDLCost DL NodeCost CurvatureCost CDICost (12)

MDLCost can be used in Our MDL optimization algo-

rithm that has 3 steps. The first is Initialization. Each

shape is defined by a number of landmarks and the

reparameterisation functions are initially set to be equally

space. The second step is rescaling and aligning shapes.

To obtain a true shape representation, each iteration start

by aligning and rescaling all curves according to Pro-

crustes analysis. The third step is Landmarks position

updating. The MDL optimization does not need to be done

on all landmarks, but only on landmarks up to a given

level. These active landmarks are called nodes that are

ordered according to ascending level. Each node is associ-

ated with a step length and the parameters anode for each

node and each training example are probed which run over 

a number of passes, until the MDLCost has stabilized.

5 Experiment Results 

We tested our method on a set of 24 box-bumps and 20

MR images of the corpus callosum. The 6 training sam-

ples of Bump model and corpus callsosum model are 

shown in figure 1. The box-bumps are generated with a

bump at a varying location and with varying aspect ratio

of the box and have the similar gray-level distribution.

The MR images of corpus callosum are randomly selected

from Dinggang Sheng’s database of normal elderly sub-

jects participating in the Baltimore Longitudinal Study of 

Aging [7].

(a) (b)

Figure 1. The box-bumps used as training set (a)
and the MR images of corpus collosum (b).

In the experiment of box-bumps, 8 control nodes have

been used for the reparameterisation, 64 markers are sam-

pled on each box-bump to evaluate the Description Length

at the given parameterisation. We set the cut as 0.003 and

passes as 40. After 80000 (40passes*8nodes*

5steps*24examples) evaluations, the results of MDL with

CDICost analysis of the training set and the results of 

MDL with CDICost turned off are shown in fig 2. In the

experiment of Corpus Callosum, the same control nodes

(8) and markers (64) are used to build MDL model. We set

the cut as 0.001 and passes as 160. The results are shown

in fig 3. It can be seen that MDL with CDICost can pro-

duce better result than that without CDICost.

Figure 2. Result of MDL without CDICost (top)
and Result of MDL with CDICost (bottom) of

ox-bumps.b

Figure 3. Result of MDL without CDICost (top)
and Result of MDL with CDICost (bottom) of
corpus collosum.

In figure 4 and 5, we show qualitative results by dis-

playing the variation captured by the first two modes of

each model (bm (m=1, and m=2) varied by ±3 standard

deviations over training set. About box-bumps model, the

first parameter corresponds to the largest eigenvalue of the

covariance matrix, which gives its variance across the

training set, and the main effect is close to a horizontal 

displacement of the bump. For the second parameter, the

main effect describes the box’s aspect ration changes. The

results show that the shapes generated by our method are

plausible and suggest specific models.

Model

1

 2 

+3 -3

Figure 4. The first two modes (m=1, m=2) of shape
variation (±3 ) of the automatically generated
models of box-bumps.
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 2 
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Figure 5. The first two modes (m=1, m=2) of shape
variation (±3 ) of the automatically generated
models of corpus callosum.

We also give the quantitative results in table 1 and 2,

tabulating the value of F (CDICost subtracted from

MDLCost) and the variances explained by the first 3

modes, comparing our methods with MDL method and

equally spaced method. The results show that CDICost

can be work as a catalyst like curvature cost for minimiz-

ing the MDL cost and produces models more compact

than either the models built by equally spaced method or

tho ed using the current MDL methods.se obtain

Table 1. A quantitative comparison of box-bumps
showing the variance explained by first 3 modes. F
is the value of CDICost subtracted from MDLCost.

Mode Equally

spaced

MDL Our method

1 0.0071548 0.0045953 0.0036741

2 0.0032664 0.0023326 0.0016741

3 0.0007587 0.0006353 0.0003023

F 31.677 17.809 15.6021

Table 2. A quantitative comparison of corpus col-
losum showing the variance explained by first 3
modes. F is the value of CDICost subtracted from
MDLCost.

Mode Equally

spaced

MDL Our

method

1 0.0018313 0.0016861 0.0015949

2 0.0013193 0.0013196 0.0011758

3 0.0011177 0.0008383 0.0008604

F 38.239 25.292 22.234

6 Conclusions

This paper describes how vector of image invariants

can be used to the establishing correspondence between a 

set of training images. Different from the existing MDL

approaches, our approach considers not only the shape

characteristics but also the local image structure charac-

teristics. By adding a CDICost term to MDL approach, we 

get more compact and specific models than that built by

the existing MDL approaches.
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