
Real-time 2D Image Stabilization: Algorithmical Aspects and Parallel

Implementation

Fábio DIAS, Jean Pierre DERUTIN, Lionel DAMEZ

LASMEA - LAboratoire des Sciences et Matériaux pour l’Electronique et d’Automatique

Université Blaise Pascal — Clermont-Ferrand — France

24 Avenue des Landais, AUBIERE Cedex – 63177

dias, derutin, damez @ univ-bpclermont.fr

Abstract

We present a real-time image stabilization method,

based on a 2D motion model and different levels of
parallel implementation. This stabilization method is

decomposed into three main parts. First, the image

matching is determined by a feature-based technique.
Then the motion between consecutive frames is estimated

and filtered to extract the unwanted motion component.
This component is finally used to correct (warp) the

images, resulting in a stable sequence. To validate our

stabilization approach in a real-time on-board system
context, the algorithm was implemented and tested over

different hardware platforms, allowing a performance

evaluation in function of the adopted architecture. In this
paper, we present some of the results concerning the

parallel implementation using the SIMD ALTIVEC®

instructions set and a symmetric multi-processor
architecture (SMP).

Keywords – 2D image stabilization, parallel
implementation, real-time application, SIMD instructions,

SMP architecture.

1 - Introduction

We are interested in the general study case of a camera

rigidly mounted on a mobile system. This configuration is

frequently found in tele-operation or aided-driving

systems. The image sequence from this camera has

informations about the movement of the vehicle in its

environment. This movement may be divided in two

components: one due to the driven motion of the vehicle,

and a second component due to the parasite motion

(unintended) suffered by the camera (bumpy ground,

vibrations, etc.). Depending on its amplitude, this parasite

component can strongly interfere in the visualization

process and understanding of the image sequence, whether

it is by a human observer/operator, or by an artificial

vision system.

In these situations, stabilizing the image sequence

consists in eliminating or smoothing of the unintended

motion component, while leaving the driven motion

component intact. This process is called “on-demand” or

“selective” stabilization.

Although electronic image stabilization is widely

explored, the architectural hardware approach allowing

these systems to work in real-time, while respecting all the

specificities of an on-board system, has received little

attention. However, it’s important to simulate the

algorithmical approach in realistic experimental

conditions, specially timing conditions. To achieve this

task, this kind of software needs a special hardware

architecture, with parallel processing abilities.

Our approach to deal with the “Algorithm-Architecture

Adequation” is based on standard computational systems,

also called “Commodity of the Shelf” (COTS). In the first

stage of the work, we have verified the precision and

robustness of our method in a sequential way. Then, in a

second development stage, we did its real-time

implementation using the parallel structures offered by the

COTS systems.

In section 2, we describe briefly the different existing

stabilization methods, and also the processing blocs which

generally compose them. In the 3rd section, we present a

more detailed description of our stabilization approach.

Section 4 presents the various hardware structures we

have adopted. Section 5 explains how the algorithm was

programmed to be executed in a parallel way. Finally in

section 6, we present some results related to the

implementation on the different hardware platforms.

2- The Electronic Image Stabilization

In the last years, several electronic image stabilization

methods were proposed. These methods may be classified

into three main families, according to the adopted motion

model: 2D or planar methods [Mo97], 3D methods
[Dur03] and 2,5D methods [Zhu98].

In fact, stabilization algorithms are composed of a

sequence of processing blocs, which have different levels

of complexity. Generally, three main processing stages are

completed: image matching, global motion processing

using the adopted model, and filtering/compensation of

the unwanted motion, getting as result a stable sequence.

2.1 - Image matching: We aim to calculate the
movement in the 2D image plan of a real-world point or

region. This movement is the 2D projection of the object’s

3D motion in the observed scene. The most current ways

to solve this problem are the optical flow extraction

[Dur03] and feature-based approaches [Mo97].

Even if the optical flow extraction method (explained in

[Horn81] and [Bar94]) has already been employed for

image stabilization purposes, it is constraining because of

its mathematical complexity (that may be relatively high).

The assumption that the optical flow fields are a 3D

motion fields projection is another constraint [Ve89].

 MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

8-1

227

In this study, to process image matching we use

detection and tracking of visual features. This method

consists in two steps: first, searching in the image i for
regions with strong visual information (e.g. strong

luminance contrast, corners, edges, etc…) called visual

features, then identifying the same regions in the image

i+1. Different tools for visual features detection are

known, for instance, the “corner and edge detector”

[Har88], the Laplacian operator and Harr's wavelets (the

latter is presented in the next section).

Once our features have been detected, we must be able

to find them in another image. This task is done using a

correlation method combined with a search strategy.

Multi-resolution techniques allow a smaller processing

time, through a “coarse-to-fine” approach. Several

correlation methods may be employed, from the simplest

ones being SSD & SAD [Pou02], to light-changes robust

methods like normalized cross correlation [Tsai03].

2.2 - Global motion estimation: Once image matching

has been achieved we can proceed to the second stage of

the stabilization processing chain: the estimation of the

motion parameters, which are determined by the adopted

motion model.

2D models suppose a planar or almost planar scene. All

points tracked in the preceding stage must lie in

approximately the same distance from the camera. In this

case, there are three parameters to estimate: two

translations (horizontal and vertical) and one rotation

around the camera optical axis. A fourth parameter may

be included, to take into account scale changes caused by

the camera forward/backward motion.

3D models suppose that only rotational parasites are

relevant. So, we have to estimate and correct 3D rotations

to stabilize our image sequence. Knowing that camera

rotation effects in images are independent from scene

depth, we are able to estimate camera rotation parameters,

using quaternions for instance [Mo97].
The 2.5 model presented in [Zhu98] presuppose the

availability of preliminary information about camera

motion leading us to estimate three global motion

parameters, plus one independent parameter for each

analysed point (tracked). This last one is a depth-related

parameter. It allows us to work with structurally

sophisticated scenes, without needing an advanced 3D

model.

2.3 - Motion compensation: Finally, after estimating

the global motion between images, we’re going to

compensate its unwanted or unintended component. This

last processing stage is closely related to the application

framework. The definition of “unwanted motion” depends

entirely from the kind of “stability” required in each

application. Several methods can achieve "full

compensation" corresponding to static background scene,

low-pass or inertial filtering [Zhu98] and low-order

polynomial fitting for 3D rotations [Dur03].

3 - Our Stabilization M ethod

General description: We have developed a stabilization

method based on a 2D motion model, with visual features

detection by Harr’s wavelets, applied over a transformed

image (integral image). The search of matching points is

done using a multi-resolution pyramidal strategy, with

three resolution levels. A SSD (Sum of Squared

Differences) operator is applied to measure the similarity

between the searched feature and its potential matching.

Once we get matching points between two successive

images, we can estimate the 2D motion model parameters

(_x, _y and θ__), using the Median Least Squares Method

(MLSM). This technique is powerful as it limits the

influence of incorrect matchings that could be found in the

previous stage. Finally, the movement parameters are

filtered and the obtained unwanted motion component is

used to warp the respective image, stabilizing the video

sequence (figure 2).

Detailed description: From each image acquired by the

camera (coded in 256 grey levels, image size adjusted by

the user) three intermediary images are produced: one

integral image, that will be used for visual features

detection, and two sub-sampled images (½ and ¼ pixels),

used to construct the multi-resolution searching pyramid.

The integral image has in its (X, Y) position the sum of all

pixels inside the rectangle delimited by i(0, 0) and i(X, Y),
where i(x, y) is the original image. The calculation uses

the formulae of recurrence given below, where ii(x, y) is

the integral image and s(x, y) is an intermediate value

(sum accumulated line by line on column x):

s(x, 0) = i(x, 0)
s(x, y) = s(x, y - 1) + i(x, y)

ii(0, y) = s(0, y)
ii(x, y) = ii(x - 1; y) + s(x, y)

Harr's wavelet processing consists in the convolution

between an image region (pattern) and one wavelet mask

(figure 1). The obtained value represents the luminance

gradient in a given direction. Wavelet’s processing is

strongly accelerated when using an integral image. In this

case, we can evaluate the sum of all pixels inside a

rectangle of any size performing only 4 memory access

and 3 sum operations [Vio01]. This property is also

exploited for sub-sampled images creation. The mean

value of pixels inside a square region (size 2x2 or 4x4) of
the original image is obtained using the integral image.

Figure 1. Three examples of wavelet masks.

Features are detected applying the wavelets over a pre-

defined zone. We use the upper half of the image to search

features present in the horizon line. Normally, these

regions are far away from the camera, enough to respect

the planarity constraint of the 2D motion model. The

detection zone is divided in n/3 vertical bands, n being the
desired features number, set by the user. Three types of

wavelets (vertical, horizontal and diagonal) are applied

into each band, and the three regions presenting the

228

Figure 2. Synoptic scheme of the stabilization algorithm.

biggest values of vertical, horizontal and diagonal

gradients respectively are selected as features (figure 3).

After the detection stage in image i, we seek the n

corresponding features in image i+1. A "search window"

with size 2Tx2T is defined around the position where a

feature was detected. The SSD is calculated between each

region inside this window and the feature selected in

image i (figure 3). The region in image i+1 which

minimizes the SSD is considered to be the match of the

respective feature. This operation is repeated for each one

of the n features detected in the preceding stage, giving us

n matching points between two successive images.

T is the largest feature displacement, between two

images, that can be measured by the system. This

configurable parameter directly influences processing

time, searching time being linked (non linearly) to the

distance T. This obvious bond between the largest

displacement and the processing time is extremely

important. The goal is to maximize the multiplication of

the largest displacement (in pixels) by the number of

images processed per second. This indicates the greatest

speed of an object (in pixels per second) that the system

can deal with. This way, the parameter T must be carefully

set, taking into account its influence on the processing

time.

Figure 3. Features detection (left) and tracking (right).

To reduce the processing load, the search for matching

features is executed in a multi-resolution approach. We

start using a ¼ sub-sampled image, and looking for a SSD

minimization inside a T/2 x T/2 window. This provides us

with a first estimation for the matching point position.

Based on this estimation, a second search process begins,

using a ½ sub-sampled image and a 3x3 search window,

placed around the first estimated position. A second

estimation is thus obtained, more accurate than the first

one. Finally, the final search stage is executed, using the

original image and a sub-pixel precision of 1/8 pixel. A

2x2 search window is analysed, and the value of regions

lying between pixels is calculated through a bilinear

interpolation of the adjacent pixels.

Having found the n points matching between images i
and i+1, we can estimate the 2D motion model parameters

describing the movement from one image to other. This

movement can be modelled by a homogeneous

transformation matrix, composed of a rotation around the

optical axis, vertical and horizontal translations. Three

matrix parameters, related to each of these movements,

must be estimated. The n point matching result is applied

to the model, and the error is minimized using the Median

Least Squares Method.

The motion parameters obtained are added to those

processed before, in order to find the total camera

movement from the beginning of the video sequence. The

found values are filtered by first-order linear filters. Each

parameter has an independent filter, and the coefficients of

all filters can be set by the user. This method allows us to

have flexible stabilization intensity, adjustable to the

application. We can also have different stabilization levels

for translations and rotation.

 The filtered values are used to get the inverse

homogeneous transformation matrix that is applied to

stabilize image i+1, bringing it back to a dynamic

reference position (figure 4). This dynamic reference

position tries to follow the commanded camera motion,

respecting the passing band determined by the coefficients

of the filter.

229

Figure 4. Stabilization of a synthetic sequence.

This stabilization method was tested with several real

and synthetic incoming video sequences. The obtained

precision for synthetic sequences (for which ground truth

information is available) is very accurate. The motion

parameters estimation between two successive images has

mean error of 0.2 pixels for translations estimation, and

0.05 degrees for rotations.

The synthetic sequences were produced from a real

road image (figure 3) and applying on it successive 2D

rigid transformations in order to simulate the camera

motion (figure 4). The camera motion model was

extracted from a real sequence took in off-road conditions.

4 – Hardware Presentation

The processing chain descrided in section 3 was

developped on a PC machine, featuring a AMD Athlon

XP 1700 processor. After the evaluation and validation of

algorithm’s efficiency, and in order to enable a real-time

processing, the application was transferred toward Apple

PowerMac machines, with shared memory biprocessor

symmetric architectures. These machines have two

processors Motorola MPC7455 (PowerG4) or two IBM

PowerPC 970 (PowerG5). The operation system is

MacOS X. The selected systems have some features

enabling parallel processing, in two different levels:

• Inside each processor, through super scalar

processing devices, and with SIMD instructions set

(Altivec).

• With two parallel processors working simultaneously,

sharing the machine’s memory (SMP architecture).

4.1 - SIMD instructions set: This type of extension is

found in several microprocessor families: MMX, SSE and

SSE2 for Intel processors, 3DNOW! for AMD, MDMX

for MIPS and VIS for SPARC processors. All these

extensions of the instructions set are based on two

principles:

• first principle: it offers SIMD processing capacities,

making possible to execute a logical or arithmetical

operation on a multiple data set, with one instruction only.

• second principle: it gives a set of instructions strongly

inspired by DSP systems: satured arithmetics, cabled and

type conversion operateurs.

These instructions are applied on fixed size vectors

(128 bits for Altivec), but the number of processed

elements inside a vector can vary: four 32 bit, eight 16 bits

or sixteen 8 bits elements.

The utilisation of SIMD instructions implies a fine

grain parallelization, recommended for repetitive

operations. In this case, if the “operations/memory access”

ratio is high enough, we can have almost linear speed-up

factors (4, 8 or 16) when processing integer type of data,

or even over-linear speed-up factors for floating point type

of data. The performances obtained with this type of

parallelization are discussed in [Fal04].

However, the SIMD parallelization is limited to the

framework of repetitive regular operations. Another

inconvenient is that it imposes a low abstraction level, and

it’s necessary to completely rewrite the software code for

that tasks we hope to accelerate.

4.2 - SMP architecture: The second level of

parallelization lies on the exploration of two processors

communicating via a shared memory. The use of this type

of architecture results in a big grain parallelization,

sharing the tasks or the data between both processors.

The operation system (MacOS X) manages the

executing tasks distribution in a “preemptive” way. It’s

also conceived to share the tasks between both processors,

making the parallel processing transparent for the user.

However, in order to execute a same task over two

processors simultaneously, we must split this task in

lighter processes called “threads”. In our case, two threads

are created and executed at the same time, enabling the

system to distribute the work between the available

processing resources.

The creation of these threads is possible using the

standard functions library “pthread”. This library defines

some rules and tools for threads creation and fusion,

including locking functions to manage tasks

synchronization and mutual exclusion.

Otherwise parallelization through SIMD instructions,

this type of parallelization allows a high abstraction level,

enabling a fast implementation without entirely rewriting

the software code.

5 – Parallel Implementation

To propose a parallelization scheme exploiting to the

best the hardware features introduced in the previous

section and presenting good timing performances, we

adopted the following methodology: the different

processing stages of the sequential version were carefully

analysed, according to two different criteria:

“operations/memory access” ratio and processing data

volume.

Based on this analysis (table 1), we tried to concentrate

the parallelization efforts on that stages where the speed

gain may be potentially high. From this analysis, we can

assume that step_1, step_2 and step_4 are the most

processing consuming stages. The relative importance (in

sequential processing time) of these stages in relation to

the whole stabilization loop is shown in table 2.

It’s noticeable that step_4 is the most time consuming

task. However, when image size is increased, intermediary

images creation (step_1 and step_2) becomes a time

consuming task too. So, in order to obtain a noteworthy

speed-up factor, it’s interesting to execute these three

tasks with a parallel approach.

230

Table 1. Decomposition and potential parallelism of

each step of the algorithm.

Processing Stage
Intrinsic

parallelism

Operations

/memory

access

Processing

data

volume

step_1:

Integral Image

Processing

data low high

step_2:

Sub-sampled

Images Processing

tasks and

data
low high

step_3:

Features Detection

tasks and

data
low low

step_4:

Features Matching

tasks and

data
very high very high

step_5:

Motion Parameters

Estimation

sequential low low

step_6:

Motion Filtering

and Correction

sequential low very low

Table 2. Relative importance of the steps 1, 2 and 4.

Processing Stage
Image

320x240

Images

640x480

Images

1280x960

step_1 and step_2:

Intermediary Images

Processing

3% 12% 24%

step_4:

 Features Matching
93% 81% 65%

5.1 - Parallel implementation on a shared memory

biprocessor symmetric architecture: As explained

before, these machines have two potential types of

parallelism: data parallelism through vectorial instructions

(Altivec library, SIMD mode), and data or task parallelism

through biprocessor architecture (SMP mode).

• The integral image creation (step_1) is processed in

SMP mode. Image is divided in two equal horizontal

bands, and the integral of each band is calculated by one

processor. The image division causes a data dependence

break. In consequence, an extra correction stage must be

executed to achieve the complete integral image.

• Sub-sampled images are calculated from the integral

image (step_2), and are completely independent one from

the other. So, a SMP mode is employed, with each

processor being responsible for one sub-sampled image

creation.

• Features detection (step_3) is done in SMP mode,

using the division in vertical bands, like explained in

section 3. Each processor searchs the half of the desired

features number (n/2), processing the half of the n/3

vertical bands that were defined inside the detection zone.

• In the sequential analysis (tables 1 and 2) we noticed

that the features matching stage (step_4) is the most time

consuming task. So, it brings two parallelism levels in its

parallel implementation. Each processor searches the

matching for that features it own has previously detected.

So, each processor is therefore responsible for tracking the

half of the desired features number (n/2).

The second parallelism level is in the correlation

computation. SSD results are obtained using Altivec

SIMD instructions. We are able to process up to 16 pixels

in only one operation and in this case, we have 16 times

less operations to process.

The SIMD function for SSD computation exists in two

different versions: a simpler one, working with integer

type data, and a more complex second version, dealing

with floating-point numbers and bilinear interpolations.

• After the tracking stage, matching points lists of both

processors are merged, and the motion model parameters

are estimated and then filtered (step_5 and step_6). These

two last stages, not presenting a relevant complexity, are

processed in sequential mode.

Table 3. Characteristics of the used machines.

System
[Arch_1]
Athlon XP

1700+

[Arch_2]
PowerMac

G4

[Arch_3]
PowerMac

G5

OS Windows XP Mac OS 10.3 Mac OS 10.3

Compiler gcc 3.2 gcc 3.3 gcc 3.3

µP number 1 2 2

µProcessor Athlon XP MPC7455 PowerPC970

Frequency 1,47 GHz 1 GHz 2 GHz

Memory size 512 Mo 512 Mo 1Go

Cache size

L1

L2

L3

128 Ko

256 Ko

64 Ko

256 Ko

1 Mo

64 Ko

512 Ko

6 – Results

The temporal performances of the stabilization

algorithm were measured with 3 image sequences with

sizes 320x240 (bench_1), 640x480 (bench_2) and

1280x960 (bench_3). The software was configured to

search n = 42 visual primitives at a maximal distance T

near to 5% of image size: T = 15 pixels for bench_1, 30
pixels for bench_2 and 60 pixels for bench_3.

Characteristics of the machines used for tests are shown in

table 3. In tables 4 and 5 we present the execution time of

the parallelized functions and of the whole stabilization

loop (step_1 to step_6).
Measures correspond to the delay between two system

time function calls, averaged over 1000 iterations of the

stabilization loop.

With 320x240 images (table 4), we obtain a very

satisfying speed-up factor on step_4 (around 12), due to

the SIMD mode, making possible to stabilize images in

less than 10ms, using only one processor.

SMP mode has a weak theoretical speed-up due to the

number of processors (only 2). On step_4, speed-up is
almost linear with approximately 1,9 for Arch_2 and

Arch_3. For step_1 and step_2, it is higher on Arch_3

(approximately 1,8) than on Arch_2 where it varies

between 1,4 and 1,7. The processing time of step_3

remains short in comparison with the whole stabilization

loop.

Even if SMP mode does not compensate the increasing

complexity of step_1 and step_2 with image size

augmentation, the final speed-up is at least 3 for Arch_2
and 5 for Arch_3.

231

Table 4. Temporal performances (in ms) for Arch_1, Arch_2, and Arch_3 with bench_1 parameters: image size 320x240,

n = 42 primitives and T = 15 pixels.

Table 5. Temporal performances (in ms) for each implementation with Arch_2 and Arch_3. Left side shows
results for bench_2 parameters (image size 640x480, n = 42 primitives and T = 30 pixels) and right side shows

results for bench_3 parameters (image size 1280x960, n = 42 primitives and T = 60 pixels).

7 – Conclusions and Future Work

This paper presents an efficient method for 2D image

stabilization with a precision near the 1/5th of pixel.

Furthermore, the originality of features detection by Harr's

wavelets using an integral image allows an important

decreasing in the number of operations, which allied to the

efforts of parallel processing gives very fast temporal

performances.

Very high speed-up factors were obtained with parallel

processing, particularly using the SIMD instructions set.

Processing time was drastically reduced, making possible

to use this stabilization method as initial (pre-processing)

stage in a chain of artificial vision algorithms. We’re able

to deal with big format images (1280x960), in real-time,

using only a commercial (COTS) system, instead of an

expensive dedicated architecture.

The parallel implementation of this stabilization

method was led as pre-study for algorithms dedicated to

the old films restoration (working with very big size

images). Further optimizations are possible. Processing

regions of interest corresponding to detection bands in

step_1 and step_2, instead of processing whole images

should reduce operations number and avoid the data

dependency correction described in part 5.1.
The implementation of an optimized version of this

same stabilization method on a MIMD-DM architecture

has already been led, and the obtained results will be

shown in our next publication [Der05]. We used a cluster

of 14 biprocessor PowerG5 machines, interconnected thru

a 1 Gbit Ethernet network, and communicating via

message passing, using the MPI library.

This last implementation has been studied for a future

implementation of this algorithm in an electronic chip,

using a network of communicating homogeneous

processors and SPMD approach.

8 – References

[Bar94] J. Barron, D. Fleet, S. Beauchemin and T. Burkitt.

“Performance of optical flow techniques”. International Journal

of Computer Vision, 12(1) : 43-77, 1994.

[Der05] J. P. Derutin, F. Dias, L. Damez and N. Allezard.

“SIMD, SMP and MIMD-DM parallel approaches for real-time

2D image stabilization”. International Workshop on Computer

Architecture for Machine Perception CAMP’2005, July 2005.

[Dur03] Z. Duric and A. Rosenfeld. “Shooting a smooth video

with a shaky camera”. Machine Vision and Applications, 13 :

303-313, 2003.

[Fal04] J. Falcou, J. Serot. ”E.V.E., An object oriented SIMD

Library”. International Conference on Computational Science

ICCS’2004, Part 3, pages 323-330, 2004.

[Har88] C. Harris and M. Stephens. “A combined corner and

edge detector”. Proceeding of the 4th Alvey Vision Conference,

pages 147-151, 1988.

[Horn81] B. Horn and B. Schunck. “Determining optical flow”.

Artificial Intelligence, 17 : 185-204, 1981.

[Mo97] C. Morimoto. “Electronic Digital Stabilization: Design

and Evaluation, with Applications”. PhD thesis, 1997.

[Pou02] H. Pourreza, M. Rahmati and F. Behazin. “Weighted

multiple bit-plane matching, a simple and efficient matching

criterion for electronic digital image stabilizer application”. 6th

International Conference on Signal Processing, 2 : 957-960,

2002.

[Tsai03] D. Tsai, C. Lin and J. Chen. “The evaluation of

normalized cross correlations for defect detection”. Pattern

Recognition Letters, Vol. 24, pages 2525-2535, 2003.

[Ve89] A. Verri and T. Poggio. “Motion field and optical flow:

Qualitative properties”. IEEE Trans. Pattern Analysis and

Machine Intelligence”, 11(5) : 490-498, 1989.

[Vio01] P. Viola and M. Jones. “Rapid object detection using a

boosted cascade of simple features”. Proceedings IEEE

Conference On Computer Vision and Pattern Recognitinion,

2001.

[Zhu98] Z. Zhu, G. Xu, Y. Yang and J. Jin. “Camera

stabilisation based on 2.5D motion estimation and inertial

motion filtering”. International Conference on Intelligent

Vehicles, 1998.

Processing stage
[Arch_1]

sequential

[Arch_2]

sequential

[Arch_2]

SIMD

[Arch_2]

SIMD + SMP

[Arch_3]

sequential

[Arch_3]

SIMD

[Arch_3]

SIMD + SMP

step_1 and step_2 1,4 2,1 2,1 1,5 0,9 0,9 0,5

step_3 0,3 0,3 0,3 0,2 0,2 0,2 0,1

step_4 33,2 56,7 4,7 2,5 31,1 2,6 1,4

Total (step_1 to 6) 37,1 61,7 9,7 7,9 33,3 4,9 3,8

Processing stage
[Arch_2]

sequential

[Arch_2]

SIMD +

SMP

[Arch_3]

sequential

[Arch_3]

SIMD +

SMP

[Arch_2]

sequential

[Arch_2]

SIMD +

SMP

[Arch_3]

sequential

[Arch_3]

SIMD +

SMP

step_1 and step_2 9,7 5,8 3,8 2,1 40,3 25,1 15,8 8,8

step_3 0,9 0,7 0,4 0,3 1,8 1,0 0,7 0,5

step_4 66,8 4,0 37,8 2,0 108,2 8,0 83,2 2,8

Total (step_1 to 6) 82,7 17,1 44,0 6,9 166,4 51,6 105,2 20,4

232

