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Abstract

We analyze the noise sensitivity of the focal length com-
putation for single-view 3-D reconstruction based on van-
ishing points and orthogonality. We point out that due to
the nonlinearity of the computation the standard statistical
optimization is not very effective. We present a practical
compromise between preventing the computational failure
and maintaining the accuracy and demonstrate that our
method can produce a consistent 3-D shape in the presence
of however large noise.

1. Introduction

Given two or more views of a scene, we can recon-
struct its 3-D structure based on triangulation [2, 3].
However, the 3-D shape can be reconstructed from only
a single view if we have sufficient knowledge about the
scene [1, 3]. For example, if there are parallel lines in
the scene, their projections define their vanishing point,
which constrains the orientation of these lines in the
scene. If we can find three vanishing points of mutually
orthogonal parallel lines in the scene, we can compute
the camera focal length and the principal point, from
which we can compute the positions and orientations
of the lines in the scene.

This type of single-view 3-D reconstruction has been
studied in various forms and is widely used today
not only in industrial environments such as robotic
manufacturing and navigation but also in many other
fields including entertainment, education, and scholas-
tic research through virtual reality generation and
3-D reconstruction from paintings and historical pho-
tographs.

The major disadvantage of such single-view recon-
struction is that because it is based on the perspective
projection geometry, according to which objects fur-
ther away look smaller, we cannot reconstruct 3-D if
there are no perspective effects. Even if there are, the
computation often fails when the perspective effects
are small, which is often the case for a distant scene.
A typical symptom is that the inside of the square root
becomes negative when we estimate the camera focal
length by the standard method, resulting in an imagi-
nary focal length.

This paper studies the effects of the noise on the
focal length computation. We point out that due to
the nonlinearity of the computation the standard sta-
tistical optimization is not very effective. We present
a practical compromise between preventing the com-
putational failure and maintaining the accuracy and
demonstrate that our method can produce a consistent
3-D shape in the presence of however large noise.

2. Camera Model

We define an XY Z coordinate system with the ori-
gin O at the center of the camera lens (the viewpoint)
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Figure 1: Perspective projection.

and the Z-axis along the lens optical axis and regard
the camera imaging geometry as perspective projection:
A point in the scene is projected onto the intersection
of the plane Z = f (the image plane) with the line
(the line of sight) starting from the view point O and
passing through that point (Fig. 1). The constant f is
called the focal length.

The input image is identified with the plane Z = f,
on which we define an xy coordinate system with the
image origin at the point on the Z-axes (the principal
point) and the z- and y-axes parallel to the camera X-
and Y-axes, respectively. The image coordinate system
is assume to have zero skew with aspect ratio 1. For
the time being, the principal point is assumed to be
known, typically at the center of the image frame (we
later consider its estimation).

We represent an image point (x,y) by the following

3-D vectors:
) - (1)
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Here, fy is a default focal length! measured in pixels.
The two vectors & and m are transformed to each other
as follows:

Throughout this paper, Z[-] normalization to make
the third component 1, and N|-| means normalization
into a unit vector. We call  and m their Z-vector and
N-vector, respectively [3].

A line in the image is written as az+by+c = 0. Since
the coefficients a, b, and ¢ can be specified only up to
multiplication by a nonzero constant, we can normalize
them to a? + b* + (¢/fo)? = 1. We call the unit vector

nzN[( (g )]
¢/ fo

the N-vector of the line [3]. Using the vector notation
of eqs. (1), we can write the equation of the line as

3)

1In theory, its value is arbitrary. In our experiment, we used
the value fo = 600 (pixels).



Figure 2: Vanishing points.

(n,x) = 0. Throughout this paper, we denote the inner
product of two vectors a and b by (a, b).

The N-vector nm of the line passing through two
points with Z-vectors x; and xs and the Z-vector x
of the intersection of two lines with N-vectors m; and
ny are given as follows [3]:

n

= Nlr; X x3], x=Z[n X na. (4)

3. Focal Length Estimation

The first step of 3-D reconstruction is to compute
the vanishing point of parallel lines in the scene: it is
defined as the intersection of their projections on the
image (Fig. 2). The orientation of the lines in the scene
coincides with the direction toward the vanishing point
on the image plane Z = f seen from the viewpoint O
2, 3].

In the presence of noise, the projections of parallel
lines do not necessarily intersect at a single point in the
image. An optimal procedure for estimating the true
intersection, called renormalization, was presented by
Kanazawa and Kanatani [5]. This procedure produces
not only an optimal estimate of the vanishing point
but also the covariance matriz?® V[m] of the N-vector
of the estimated vanishing point as a byproduct.

Suppose the vanishing points of three mutually or-
thogonal parallel lines are located in the image. Let
my, Mo, and ms be their N-vectors, and V[my],
V[ms], and V[mg] be their covariance matrices. The
unit vectors my, Mo, and mg3 that start from the view-
point O and point toward these vanishing points are
given by

’I’hi :N[Ifmz}, 1= 1,2,3, (5)
where
Iy Ediag(l,l,i). (6)
Jo
The symbol diag( - - - ) denotes the diagonal matrix with

- as the diagonal elements in that order. Since the
three vanishing point orientations should be mutually
orthogonal, we have the following constraints:

€1 = (mg,mg,) == 0,

€y = (m377h1) = 0,

€3 = (ml, ’l’;’Lz) =0. (7)
In the presence of noise, these do not necessarily hold
exactly. An optimal estimate for the focal length f is
obtained by minimizing the following function [4]:

3
J = Z Wijeiej.

ij=1

(8)

Here, we define the matrix W =
of the matrix V =

(Wi;) as the inverse
(Vi;) having the covariance V;; of

2Since multiplication of the covariance matrix by a common
factor does not affect the results in this paper, we compute it
with an appropriate scale normalization [4].
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e; and e; as the ij element (V; is the variance of e;).
Using eq. (5), we obtain

Vi = (mg,I2V[m2] )+(m2,I [mg]Ime)

Vay = (mu, I3V [mg]I3my)+(mg, I3V [m) | T3ms),

Vaz = (mQ,I V[ml] mo)+(my, [mg]Ifml)

Vag = Vap = (mo, I3V [m ]Ifm3>

Vay = Vis = (mg, I3V [ms|Im,y),

Vig = Vo1 = (my, I3V [ms]I3my). (9)
The matrix W = (W,;) weights the three constraints

of egs. (7) according to the reliability of the three van-
ishing points evaluated in terms of their covariance ma-
trices V[m;]. If the uncertainty of each vanishing point
were the same and independent of each other, the ma-
trix W would be a constant times the unit matrix I, so
the minimization of eq. (8) would reduce to the least-

squares method that minimizes Zz €2,
Eq. (8) can be minimized by first regarding W as a
constant matrix. Then, eq. (8) is a quadratic polyno-

mial in 'Y
o= (%)

so the value « that minimizes eq. (8) can be analytically
obtained. We update W by substituting this value,

(10)

recompute «, and iterate this until it converges. The
focal length f is given by
f = fove. (11)

4. Composite Method

The above method sounds satisfactory, because it
is theoretically guaranteed to be optimal. However,
the optimality is based on linear analysis: the co-
variance matrix V[m] is defined as the expectation
E[AmAm ] for the deviation Am of m evaluated to
a first approximation via Taylor expansion [4].

In reality, the vanishing point computation is highly
nonlinear, particularly so when it is located very far
a way from the frame center, resulting in far larger
deviations than predicted by the covariance analysis.
A typical symptom is that the value a computed by
eq. (8) becomes negative, resulting in an imaginary fo-
cal length f.

The reason why a real solution does not exist while
geometrically there should be one is that some of the
necessary geometric constraints are violated. In fact,
the three vanishing points cannot be anywhere but
should be at the vertices of a triangle whose ortho-
center is at the principal point [2, 3], implying that the
directions toward any two of them from the principal
point make an obtuse angle.

However, the vanishing point locations can be per-
turbed to a large extent even by slight noise due to the
nonlinearity, so these conditions may be violated. For
such an inadmissible configuration, a real focal length
solution may no longer exist.

From these considerations, we take a strategy of
complementing the insufficiency of linear analysis by
checking to what extent the necessary geometric con-
ditions are violated. We consider the following four
cases for the angles made by the directions toward the
computed vanishing points from the image origin:
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Figure 3: (a) Simulated image of a box. (b) The percentage (%) of computational failure. Solid line: optimal computation.
Dotted line: least squares. (c¢) Accuracy of focal length computation. Solid line: composite method. Dashed line: optimal

computation. Dotted line: least squares.

Case 1: Three obtuse angles. We regard the three
vanishing points as sufficiently reliable and do the
optimal computation as described in Sec. 3.

Case 2: One acute angle. We remove from among
the three constraints in egs. (7) the one involv-
ing the two directions that make an acute angle
and minimize eq. (8) subject to the remaining two
constraints.

Case 3: Two acute angles. We retain from among
the three constraints in egs. (7) only the one in-
volving the two directions that make an obtuse
angle. In this case, we need not minimize eq. (8):
the solution that makes eq. (8) zero can be ana-
lytically obtained.

Case 4: Three acute angles. We regard no vanish-
ing points as reliable and formally returns f = oo
(a sufficiently large value in practice).

Fig. 3(a) is a simulated image of a rectangular box.
The image size is supposed to be 300 x 400 (pixels), and
the focal length is set to f = 1000 (pixels). We added
Gaussian noise of mean 0 and standard deviation o
(pixels) to the z and y coordinates of all the vertices
positions independently and estimated the focal length.

Fig. 3(b) plots the percentage (%) of computational
failures (resulting in an imaginary focal length or no
convergence®) of the optimal computation of Sec. 3.
(solid line) over 1000 trials using different noise for
each ¢ on the horizontal axis. The dotted line shows,
for comparison, the corresponding result for the least
squares (eq. (8) is replaced by Z?:1 e?). The compos-
ite computation is not plotted here, because it does not
fail.

We can see that the rate of computational failures
increases as the noise increases. It is larger for the
optimal computation than for the least squares, indi-
cating that pursuit for high accuracy is generally not
compatible with computational robustness.

We then evaluated the relative accuracy of the com-
posite method by the following root-mean-square:

(12)

Here, f(*) is the ath instance of the 1000 trials. We let
@ = oo (ie., (f(@ — f)/f@ = 1) if the computation
failed. Fig. 3(c) plots the value D for the noise standard
deviation ¢ on the horizontal axis. The solid line is
for the composite method; the dashed line is for the

3We regarded the iterations as convergent when the increment
in f is less than 1 pixel and as divergent when the number of
iterations exceeds 10.
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optimal computation; the dotted line is for the least
squares.

We can immediately see that the least-squares
method, which ignores the statistical error behavior,
yields poor results. The optimal computation indeed
achieves high accuracy when the noise level is small,
but the error irregularly fluctuates for a large noise
level. The composite method retains high accuracy for
small noise, yet preserves the accuracy expected of the
optimal computation even for large noise.

5. Image Data Correction

So far, we have assumed that the principal point is
known and taken to be the image origin. It can be
computed as the orthocenter of the triangle defined by
the vanishing points of three mutually orthogonal set
of parallel lines in the scene [2, 3]. According to our
simulation experiments, however, the principal point is
very sensitive to noise; it is perturbed to an extraor-
dinary degree by very small noise. We conclude that
estimating the principal point is not realistic unless the
vanishing points can be estimated with very high ac-
curacy. Rather, it is more reasonable to assume an ap-
propriate principal point instead of estimating it. The
possible distortions resulting from the use of a wrong
principal point can be compensated for by correcting
the image itself so that it conforms to the estimated
parameters. We now describe the procedure.

The three directions from the viewpoint to the
vanishing points may not be exactly orthogonal even
though the focal length is optimally computed. So, we
correct them to be exactly orthogonal. First, we con-
vert the N-vectors {m, mq, ms} of the three vanish-
ing points into {Mmy, 19, ms} for the computed focal
length f, using egs. (5) and (6). A statistically optimal
method for computing an orthonormal system {e;, ea,
es} that best approximates a given set of vectors {m,
Mo, M3} is to minimize
les — ria||?

tI‘V[m3]

ez — 1y |?
trV[mg}

ler — 7|
trV[ml]

;o (13)

where V[my;] is the covariance matrix of the ith vanish-
ing point computed by renormalization, and tr denotes
the trace?. The solution is obtained by computing sin-
gular value decomposition (SVD) of the matrix that
has {my, Mma, ™3} as its columuns:

< tﬂ;?;ns} e T >
(14)

trV[ms]  trV[ms]
= Vdiag(al,ag,gg)UT.

4By the definition of the covariance matrix V[m;], the trace

trV [m;] is the mean square E[||Am;||?].
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Figure 4: Input image (short-range view) and its 3-D reconstruction.

Figure 5: Input image (distant view) and its 3-D reconstruction.

Here, V and U are orthogonal matrix, and o1, o2, and
o3 the singular values. The solution {e1, ez, e} is
given as follows [3, 4]:

(e e e3 )=VU'. (15)

If we modify the vanishing point locations, the pro-
jections of parallel lines no longer pass through them
in the image. So, we correct all the lines so that they
pass through their respective vanishing points. Let n
be the N-vector of the line in question, and Vn] its
covariance matrix. Let m; be the N-vector of the cor-
rected vanishing point. The optimal correction An of
n is is given as follows [4]:

_ (’I’L, mi) ]
7 N[n (mi,V[n]mi)V[n]mZ . (16)
If the lines are corrected in this way, the Z-vectors
of their intersections are replaced by the second of
eqs. (4). Points on these lines but not at the intersec-
tions with other lines are orthogonally displaced onto
the nearest position on the corrected lines. The N-
vectors of the lines passing through displaced points
are replaced by the first of egs. (4), the Z-vectors of
the intersections of the displaced lines are replaced by
the second of eq. (4), and this process is propagated.
Using the constraints on the orientations of lines and
planes provided by the corrected vanishing points and
vanishing lines, we can determine the 3-D shape of the
scene up to a scale factor [1, 3].

6. Real Image Examples

Fig. 4(a) is a short-range view of a building with a
strong perspective effect (300 x 400 pixels). The se-
lected feature points are marked in it. Using the three
orthogonal directions drawn in Fig. 4(b), we estimated
the focal length to be 416 pixels by least squares and
431 pixels by the optimal computation. In this case,
the three angles defined by the vanishing points are all
obtuse, so the composite method reduces to the opti-
mal computation. Fig. 4(c),(d) are views of the recon-
structed 3-D shape seen from two different angles.

Fig. 5(a) is a distant view of a building with lit-
tle perspective effect (300 x 400 pixels); the pro-
jection is almost orthographic. Using the feature
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points marked there and the three orthogonal direc-
tions drawn Fig. 5(b), we estimated the focal length
to be 812 pixels by least squares and 2825 pixels by
the optimal computation. In this case, only one of
the three angles defined by the vanishing points is ob-
tuse, and the composite method yields 3103 pixels. Ap-
plying our correction procedures, we obtain a consis-
tent 3-D shape, as displayed in the two right images
in Fig. 5(c),(d): lines that should be parallel are ex-
actly parallel, and lines that should be orthogonal are
exactly orthogonal.

7. Concluding Remarks

We analyzed the noise sensitivity of the focal length

computation for single-view 3-D reconstruction. We
pointed out that due to the nonlinearity of the com-
putation the standard statistical optimization is not
very effective. ~We presented a practical compro-
mise between preventing the computational failure and
maintaining the accuracy and demonstrated that our
method can produce a consistent 3-D shape in the pres-
ence of however large noise.
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