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Abstract

In this paper, we present a useful histogram in or-
der to reduce sensor noise effect and get to similar
measures. This histogram is constructed in HSV color
space using the probabilistic representation of color
distribution. To prove the effectiveness of the ap-
proach, we conducted two experiments in comparison
with the conventional one.

1 Introduction

Object recognition from color images has been
widely tackled recently. In order to discriminate
similar objects, a color histogram is often employed
[1, 2, 3], e.g, a hue color histogram. However, an
image captured by a camera certainly contains addi-
tional sensor noise. Using a conventional histogram,
the afore-mentioned noise reduces the object recogni-
tion rate.

In this paper, we propose a novel probabilistic
histogram, named an Integrated Probabilistic His-
togram (IPH), which enables effective object recogni-
tion called . The IPH employs a probabilistic rep-
resentation of color distribution in HSV color space.
The IPH is made from hue data using the probabilis-
tic behaviors of saturation and value data. The IPH
is represented by the summed densities of probabilis-
tic distributions. The IPH also has the advantage
of representing a certain density if the image shows
achromatic color. We conducted two experiments to
evaluate our IPH; the results show its effectiveness in
recognizing objects.

2 Noise Model

The image data captured by a camera contains ad-
ditional sensor noise. The noise model is shown in
equation (1). wuest and o, are respectively the stan-
dard deviation and the estimated value.

(1)

In this paper, we define red, green, and blue values
as R,G,andB, and also represent individual sensor
noises of RGB colors, og, 0, and og in RGB space.

ﬂ = Uest + Ouw-
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standard deviation of a certain function
q(u,...,w) is calculated by equation (2).
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Note that o,...,0, are supposed by captured im-
ages. The predicted uncertainty o, can be computed
if oy,...,04 are independent, random and relatively
small [4]. 0¢/0u and Og/0w represent the partial
derivatives of q in u,...,w.

In this paper, we define a shape of sensor noise as
the following kernel:

(2)
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In order to employ the kernel, we agreed on Gevers’s
kernel because photons fit well into Gaussian distribu-
tion when the average number of the counts of photons
is large [5].

3 RGB-HSV Conversion

Values of H,S,V (and Z) in HSV color space are
given by R, GG, and B in RG B color space by equation
(4) ~ (7). In this paper, R, G, and B are limited to
0 < R,G,B < «a. H is also limited to 0° < H < f°.
The range of S and V are 0 < 5,V < a.

Equation (4) gives the value of V.

V =maz(R, G, B). (4)

The minimum value of Z in R, G, and B values is
given by the following equation:

Z =min(R,G, B). (5)

Saturation value S is transformed by equation (6).

sza(¥). (6)

H is given by equation (7). Suppose that X = V
means that X (X € R,G, B) corresponds with V.
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4 The Integrated Probabilistic His-

togram
The aim of the study is to be able to represent the
probabilistic behavior of sensor noise on a hue color
histogram. In order to realize such a representation, a
calculation of standard deviation in HSV color space
is required. We integrate these standard deviations
of H, S, and V into one standard deviation to cre-
ate a mono-dimensional probabilistic histogram. We
term this histogram Integrated Probabilistic Histogram
(IPH). The average and standard deviation of both V'
and Z, however, cannot be calculated using differen-
tiation because of the functions of max and min.
A certain probability of p,(z) in the Gaussian dis-
tribution y € R, G, B leads to equation (3).
(z—uy)?

1 T 202

py(x) = K*(z) = o (8)

Maximum probability Px, (z) (X € R,G, B) in RGB
color space is given by:

Pr, (z) = ) /_ oo /_ ; pc(w)ps (v)dvdu
Pg,(z) = 9] /:o /_;pB(u)pR(v)dvdu
Pp, (z) = 90)/:)0 /j;o pr(u)pc(v)dvdu

Equation (9) gives probability V in z as

Py(z) = Pry(2)(1-Pay(2))(1 - Psy(z))
+(1 = Pry (z))Pay (¢)(1 = Ps,, (z))
+(1 = Pry ())(1 - Pay (2))Pp, (2).
(10)
Equation (10) gives an average of V' as
/wPV(w)dw
uy = ——— (11)
/Pv(a:)da:
Finally, a standard deviation of V' is computed by:
oy = / Py (z)(x — uy )’ dz (12)

The average and standard deviation of Z are also
given by (5). Maximum probability Px,(z) (X €

R,G, B) in RGB color space is given by:

Pry(@) = pa(@) / N / " po(wpn(v)dvdu
Po,(@) = pe() / N / " o (wpr(v)dvdu
Py, (r) = (x)/zw /:opR(u)pG(v)dvdu (13)

Equation (13) gives probability Z in z as
Pz(z) = Pry(z)(1 - Pa,(z))(1— Pp,(z))
+(1 = Pr, (z))Pa, (z)(1 - Ps,(x))
+(1 = Pr, (2))(1 = Pg, (z)) P, (z).

(14)
Equation (14) gives an average of Z as
/a:Pz(a:)da:
Uz = ———. (15)

[ Py @)z

Finally, a standard deviation of Z is computed by:
oz = / Pz (x) (& — uz)’de. (16)

Substitution of (6) in

tion of S as
| Z26% + V202
0s =« # (17)

Substitution of (7) in
tion of H as

(2) gives the standard devia-

(2) gives the standard devia-

oraB(G, B), R=V
OH = oree (B, R), G=V (18)
O'RGB(R G) B=V

where ogpgp(z,y) in (18) is given by:
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Finally, the probabilistic behavior of sensor noise
can be computed on a hue color histogram by the
equations (12), (17), and (18) in HSV color space and
(16). The IPH is given by equation (20). This his-
togram also has the ability of computing achromatic
color in the histogram.

fu(t) = 12/ K (x)dz. {t|t=1,2,...,§} (20)

i=1 Y h(t=1)
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Figure 1: A cylinder target changing satulation and
value along with the circumferential (Top : 0°, 30°,
60°, 90°. Middle: 120°, 150°, 180°, 210°, Bottom :
240°, 270°, 300°, 330°. )
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where n is the amount of image pixels that are se-
lected to make this histogram, ¢ is the parameter of
bin in the histogram, and h is the width of bin.

5 Experiments

We conducted two experiments to evaluate the
quality of the IPH. In the experiment, the IPH was
compared with a conventional/simple hue histogram.
Note that parameters a and [ were set as a = 255,
and f# = 359. R, G, B, H, S, V, and Z were over 1
interval. The experiments were conducted on a cylin-
drical target having a gradual circumferential pattern
change of saturation and value. The difference be-
tween the source histogram and a target histogram
was computed using the Sum of Absolute Differences
(SAD) in each histogram. The conditions of the ex-
periments are shown as follows:

C1: A comparison between the same posture images

C2: A comparison between different posture images

5.1 Methods
Caml1

TYPE : SONY Entertainment Vision Sensor (EVIS) [6]

SD : OR = 1.01, oG = 0.86, op = 1.04

Cam?

TYPE : ELMO UN43H (ObjectCam) [3]
SD: or =3.52, og =2.23, op =3.20
Cam3

TYPE : I-O DATA USB-CCD

SD: or =4.19, og = 2.35, op = 3.41

Figure 1 depicts 12 postures of the cylindrical tar-
get. 10 images were continuously captured in each
posture over 30° intervals. The evaluated cameras all
got 120 images in the same environment condition.
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Figure 2: Average ratio of SAD between the same
postures

20
- Caml

o - Cam2
%3 15 F —{F Cam3
o D“ﬂ,\\l o
o T /Df/D O t/
< L ~ e~ ~ o
210 o - /o
:ij !—A—__ﬂ’\\ /23%77’_&\ A = /’_“ﬁ\
5 3 T N e © -
g = v n
o

0.0 1 1 1 1 1

o] 30 60 90 120 150 180 210 240 270 300 330

Posture (deg)

Figure 3: Standard deviation ratio of SAD between
the same postures

5.2 Results

Figure 2 shows the average SAD ratio of the IPH on
the conventional hue histogram in condition C1. The
vertical axis (Y-axis) represents an evaluated value
where the average error of SAD on the IPH was di-
vided by the average error of SAD on the conventional
histogram. The IPH wins when the evaluated value is
“less” than 1.0 point. In the Cam1 and Cam? condi-
tion, each total average error is less than 0.4 points.
In all camera conditions, the total summed average
errors were 0.30 in Caml1, 0.32 in Cam?2, and 0.44 in
Cams.

Figure 3 illustrates the standard deviation SAD ra-
tio on the IPH to the conventional hue histogram in
condition C1. The vertical axis represents an evalu-
ated value as the standard deviation error of SAD on
the IPH, which was divided by the standard deviation
error of SAD on the conventional histogram. The IPH
wins when the evaluated value is “less” than 1.0 point.
In all camera conditions, the total summed standard
deviation errors were 0.57 in Cam1, 0.81 in Cam2, and
1.18 in Cams3.

Figure 4 describes the average SAD ratio on the
IPH to the conventional hue histogram in condition
C2. The source posture was set at 0° posture. The
vertical axis represents an evaluated value where the
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Figure 4: Average ratio of SAD between different pos-
tures

12
<
[ R e T
< TN P /Lf\_“(/ /A//&\ \3
506 -
&
>
L04 r
o -+ Cam1
So02 F o Cam2
§ < Cam3
c,) O 1 1 1 Il 1

0 30 60 90 120 150 180 210 240 270 300 330

Posture (deg)

Figure 5: Standard deviation ratio of SAD between
different postures

average error of SAD on the IPH was divided by the
average error of SAD on the conventional histogram.
The IPH wins when the evaluated value is “more” than
1.0 point. In all camera conditions, the total summed
average errors were 1.90 in Caml1, 1.13 in Cam?2, and
1.29 in Cams3.

Figure 5 depicts the standard deviation SAD ra-
tio on the IPH to the conventional hue histogram in
condition C1. The source posture was set at 0° pos-
ture. The vertical axis represents an evaluated value
where the standard deviation error of SAD on the IPH
was divided by a standard deviation error of SAD of
the conventional histogram. The IPH wins when the
evaluated value is “less” than 1.0 point. In all cam-
era conditions, the total summed standard deviation
errors were 0.86 in Camli, 0.98 in Cam?2, and 0.84 in
Cam3.

5.3 Discussions

In condition C1, the total summed average errors
were 0.30 in Caml, 0.32 in Cam?2, and 0.44 in Cams.
The results show that the IPH depresses the average
error of SAD among the same posture images less than
in the conventional histogram. In the C2 condition
of the experiments, the total summed average errors
were 1.90 in Caml1, 1.13 in Cam2, and 1.29 in Cam3.
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The two results show the effective suppression of the
average error of SAD among the different posture im-
ages. These contrasting results between C1 and C2
give us considerable benefit in discriminating objects
on a vision-based application.

The results of the C1 condition experiment are 0.57
in Caml1, 0.81 in Cam?2, and 1.18 in Cams in the stan-
dard deviation SAD ratio of the IPH to the conven-
tional histogram. Also, the results of the C2 are 0.86
in Caml1, 0.98 in Cam2, and 0.84 in Camd3. In those
results, depressions of standard deviation are shown,
except for Cam3. The results show that the IPH pro-
vides the system with stability for object recognition.

We believe that the proposed method enables a
vision-based system to be able to identify an object
precisely and stably on the HSV color space.

6 Concluding Remarks

In this paper, we proposed the Integrated Prob-
abilistic Histogram (IPH) to suppress sensor noise
caused by a camera device. The experimental results
show that the IPH is higher in 1) the discrimination
ability for detecting similar images and 2) the stabil-
ity of object detection than in the conventional hue
histogram.

The future work of this study is to minimize a com-
parison error between approximately the same images
and to stabilize the error using a novel near modeling
of sensor noise for high-speed image processing. Addi-
tionally, we must consider how to reduce the influence
of dark current noise.
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