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Abstract 

A new method for automatically building statistical 
shape models from a set of training examples and in 
particular from a class of hands. In this method, landmark 
extraction is achieved using a self-organising neural 
network, the Growing Neural Gas (GNG), which is used 
to preserve the topology of any input space. Using GNG, 
the topological relations of a given set of deformable 
shapes can be learned. We describe how shape models can 
be built automatically by posing the correspondence 
problem on the behaviour of self-organising networks that 
are capable of adapting their topology to an input 
manifold, and due to their dynamic character to readapt it 
to the shape of the objects. Results are given for the 
training set of hand outlines, showing that the proposed 
method preserves accurate models. 

1 Introduction 

The construction of a detailed model from complex 
objects such as the human hands is problematic because of 
the large number of correspondences that need to be made 
to capture the shape variations. The correspondences can 
be achieved by generating a set of landmarks manually or 
automatically. The manual correspondence is both 
laborious and subjective especially when applied to 
three-dimensional images.  

In this paper, we define a new method for automatically 
labeling the training set based on the theoretic framework 
of self-organising neural networks. The key insight is that 
if enough random patterns are used when the algorithm is 
applied then the network will place the neurons always in 
relatively closer positions to the object contour. If any 
point has more probability of being selected then the 
algorithm will place a neuron in that point. W hen the best 
neuron is selected then all the topological neighbours 
move towards that neuron. 

This work opens up a new research interest in computer 
vision applications, because GNG can be used as a study 
for the representation of the contour of two-dimensional 
objects. 

2 Automatic M odel Building M ethods 

Various attempts have been made to automatically 
extract landmark points from a set of training examples.  

Baumberg and Hogg [8] describe a system, which 
generates flexible shapes models from walking 

pedestrians using automatic landmark extraction. 
Landmarks are generated by computing the principal axis 
of the boundary and by generating a number of equally 
spaced points along the boundary. W hile the process is 
satisfactory, the parameterisation of the process is 
arbitrary and is described only for 2D shapes.  

Hicks and Bayer [4] describe a system that 
automatically extracts landmark features from biological 
specimens, and is used to build an Active Shape Model 
(ASM). Their approach is based on identifying shape 
features such as regions of high curvature that can be used 
to establish point correspondences with boundary length 
interpolation between these points. W hile this method 
works well for diatom species where the heights and the 
relative position of the contour curvature local maxima 
and minima change little, it is unlikely that it will be 
generally successful for shapes such as hands where there 
are a lot of variations in the shape.  

Angelopoulou and Psarrou [7] use 8-connectivity 
Freeman chain code boundary descriptor to obtain 
automatically the coordinate of the boundary pixels and 
the direction of the boundary. It works well with closed 
boundaries, but it has not been tested on open boundaries. 
Also, a reference point is required. Because the diameter 
of the shape boundary varies, it is not clear that 
corresponding points will always lie to regions with 
similar curvatures. 

Hill and Cris [5] employ a binary tree of corresponded 
pairs of shapes to generate landmarks automatically. In 
order to solve the pairwise correspondence problem they 
use a polygon-based correspondence algorithm. W hile the 
algorithm works well with different classes of objects, it 
assumes that the objects are represented by closed 
boundaries. 

Davies et. al. [2] describe a method for automatically 
building statistical shape models by using the Minimum 
Description Length (MDL) principle. The MDL is 
obtained from information theoretic considerations and 
the model order is defined as the model that minimises the 
description length. This is a very promising method for 
measuring the model quality of a statistical shape, but due 
to the very large number of function evaluations, this 
optimisation method is computationally expensive. 

3 Statistical Shape M odels 

A statistical shape model can be built from a training 
set of examples after labeling and aligning them to a 
common coordinate frame. The number of shapes from 
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the training set is denoted as {Si} and n are the landmark 
coordinate points for each of the {Si} shapes. The vector 
describing the n landmark points of the {Si} shape in the 
training set is given as: 

1 2 1 0 1 2 1

[ , , , ...... , , ..... ]
, ,n n

T
x x x x y y y y

i i i i i i i i i− −0

=x  (1) 

The data were aligned using the Generalised Procrustes 
Analysis algorithm [9]. The outcome of the alignment is N
aligned shapes 1 2, ,......

N
x x x  with mean shape X . The 

modes of variation are defined by applying the principal 
component analysis (PCA) to the set. Each example is 
represented as a shape vector and the mean shape is given 
as: 

1 N

i

iN =1

= ∑x x            (2) 

The deviation from the mean is given by: 

i i
d = −x x x           (3) 

The covariance matrix of the 2n x 2n landmark points 
is:

1 N
T

i i

i

C d d
N =1

= ∑x x x        (4) 

The modes of variation can be derived by applying an 
eigen-decomposition of the Covariance matrix C

x  such 
that: 

i i iC λ=xp p           (5) 

where i
λ  ( 1

i i
λ λ≥ + ) is the 

thi  eigenvalue of C
x

and ip  is the associated 
thi  eigenvector. Most of the 

variation can be described by a small number of t modes.
One method for calculating t is to calculate the sum of the 

i
λ  and choose t such that: 

2

1 1

( )
n t

T i i

i i

a λ λ λ
= =

= ≤∑ ∑       (6) 

where 0 1a≤ ≤  will govern how much of the 
variation seen in the training set can be represented by a 
small number of t modes. Any shape in the training set 
can be approximated using the mean shape and a weighted 
sum of the principal components from the t modes. 

t tβ= +x x P            (7) 

where                                

1 2( ... )t t=P p p p          (8) 

is the matrix of the first t eigenvectors and  

t tβ β β β Τ
1 2= ( ... )        (9) 

is a vector of weights for each eigenvector. The weight 
vector describing the best approximation, can be found 
from: 

( )T

t
β = −P x x        (10) 

To ensure that that above weight changes describe 
reasonable variations we restrict the weight tb to the 
range: 

3 3i i iλ β λ− ≤ ≤       (11) 

where we see that most of the population is in the order 

of 3  from the mean. Finally, we obtain the data by 
adding the mean to the original data using the equation 
below:   

' ( ( ))
Tβ = + −x P P x x      (12) 

PCA has given the original shapes in terms of their 
differences and similarities. Since the variations can be 
performed with the most significant eigenvectors the 
dimensionality of the data is reduced and the variations 
are described with fewer variables. PCA works well as 
long as good correspondences exist. To obtain the 
correspondences and represent the contour of the hands 
the self-organising network GNG was used.  

4 Topology Learning 

4.1 Growing neural gas (GNG) 

The Growing Neural Gas (GNG) [1] is an incremental 
neural model able to learn, as the other self-organizing 
networks do, the topological relations of a given set of 
input patterns by means of hebbian learning. 

Unlike other methods, the incremental character of this 
model, avoids the necessity to previously specify the 
network size. On the contrary, from a minimal network 
size, a growth process takes place, which continues until 
an ending condition is fulfilled. Also, learning parameters 
are constant in time, in contrast to other methods whose 
learning falls basically in decaying parameters. 

4.2 Learning algorithm 

We consider a neural network as: 

•  a set N  of nodes (neurons). Each neuron Nc ∈

has its associated reference vector 
d

c Rw ∈ . The 

reference vectors can be regarded as positions in the 

input space of their corresponding neurons,  

•  a set A  of edges (connections) between pairs of 

neurons. Those connections are not weighted and its 

purpose is to define the topological structure. 

The GNG learning algorithm to approach the network 
to the input manifold is as follows: 

1. Start with two neurons a  and b  at random 

positions aw and bw  in 
dR .

2. Generate an input signal ξ  according to a 

density function )(P ξ .

3. Find the nearest neuron (winner neuron) 1s  and 

the second nearest 2s .

4. Increase the age of all the edges emanating from 

1s .

5. Add the squared distance between the input 

signal and the winner neuron to a counter error of 

1s :

2

1 1
ξ∆ −= sw)s(error    (13) 

6. Move the winner neuron 1s  and its topological 

neighbours (neurons connected to 1s ) towards 

ξ  by a learning step wε  and nε , respectively, 

of the total distane: 
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)w(w sws 11
−= ξε∆     (14) 

)w(w
nn sns −= ξε∆     (15) 

7. If 1s  and 2s  are connected by an edge, set the 

age of this edge to 0. If it does not exist, create it. 

8. Remove the edges larger than maxa . If this 

results in isolated neurons (without emanating 

edges), remove them as well. 

9. Every certain number λ  of input signals 

generated, insert a new neuron as follows: 

• Determine the neuron q  with the maximum 

accumulated error. 

• Insert a new neuron r  between q  and its 

further neighbour f :

( )fqr ww.w += 50     (16) 

• Insert new edges connecting the neuron r

with neurons q  and f , removing the old 

edge between q and f .

• Decrease the error variables of neurons q and 

f multiplying them with a constant α .

Initialize the error variable of r with the new 

value of the error variable of q and f .

10. Decrease all error variables by multiplying them 

with a constant β .

11. If the stopping criterion is not yet achieved, go to 

step 2. 

4.3 Characterising hand posture 

Given an image R)y,x(I ∈  of the object we 
perform the transformation ( ) ( )( )y,xIy,x ∇=∇ψ  that 
associates to each one of the pixels its probability of 
belonging to the contour of the object. Figure 1 shows the 
transformation. 

Figure 1. Image A represents original image in grey level, 

in B a threshold is applied that converts to B/W, and in C 

the contour is obtained 

If we consider ( )y,x=ξ  and ( )ξψξ ∇=)(P , we 

can apply the learning algorithm of the GNG to the image 
I , so that the network adapts its topology to the contours 
[3]. Figure 2 shows the adaptation process. 

Figure 2. Adaptation process of the GNG 

   Sometimes in the contour, if the fingers of the hand 
are too close wrong edges can be created between neurons 
that are located in different fingers (Figure 3). This 
problem is both fast and easy to solve by defining a rule to 
delete the edges drawn onto a part of the input space that 
does not belong to the contour, or by removing from the 
list of neurons created in the learning process all the 
inappropriate cycles produced. 

Figure 3. Examples with “wrongly” obtained neurons 

model A and the applied corrections, model B 

4.4 Obtaining the contour and normalise 

When the learning process is finished, a set N  of 
nodes (neurons) and a set A  of edges (connections) 
between pairs of neurons are obtained representing the 
contour of the hand preserving its topology [6].  

   The list of neurons and edges define a graph. To 
normalise the graph we must define a start point, for 
example the neuron on the left-bottom corner. Taking that 
neuron as the first we must follow the neighbours 
avoiding the cycles until all the neurons had been added to 
the new list.  

If necessary we must apply a scale and a rotation to the 
list with respect to the centre of gravity of the list of 
neurons. We achieved the required alignment by applying 
a transformation T composed by a translation (tx,ty), 
rotation , and a scaling s: 

(cos ) (sin )

(sin ) (cos )

i i i x

i i i y

x s x s y t
T

y s x s y t

θ θ
θ θ

−

+

     
= +     

     
  (17) 

The results of GNG reordering the neurons and the 
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normalised neurons can be seen in Figure 4. 

Figure 4. D is the result of GNG reordering the neurons 

and E shows the list of normalized neurons. 

5 Results 

In our experiments, 12 hand outlines were segmented 
from images of different poses. Using GNG we have 
generated 144 neurons, which represent the landmarks 
(hence 288 parameters) of each of the image of the 
training set. Table 1 shows the computational time for a 
various number of neurons and input patterns. 

Table 1. Time spent (in seconds) to adapt the GNG to the 

contour and reorder the neurons depending on number of 

neurons and input patterns  

      Patterns 

Neurons 
1000 2000 5000 

144 8 9 11 

100 5 5 7 

64 2 2 3 

Experiments were made as well with other 
self-organizing models as Kohonen maps [10], Neural Gas 
[11] and the same GNG for obtaining the 2D map but 
erasing all neurons except those that belong to the contour. 

Figure 5 shows the adaptation process using three 
different topology-preserving networks. The topology 
preservation of the Kohonen maps in comparison to GNG 
is very poor. On the contrary, with the NG the topology, 
preservation is excellent and the contour can be defined 
very accurately, but the learning time is more than ten 
times higher than the time for GNG version for contours. 

Figure 5. Adaptation process with Kohonen maps, NG and 

GNG obtaining the contour neurons from the 2D input 

space of the hand 

6 Discussion and Conclusions 

This paper presents a new method for automatically 
extracting landmarks from a training set by using a 
self-organising neural network (GNG). By establishing a 
suitable transformation function, the model is able to 
characterize the shape of the object and adapt its topology 
to the contour of the object. 

In this work the correspondence problem is implicitly 
solved by the learning process of the network and new 
areas in shape representation and analysis are opened. 

Future work will be aimed at processing contours in 
unconstrained environments, that is, with coloured or 
heterogeneous backgrounds and extended it to high level 
three-dimensional shape variations.  
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