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Abstract

The scope of this paper is the challenging task of classi-
fying terrestrial images of buildings, automatically. Straight
line segments and their connectivity incorporate significant
information about object shapes. Man-made buildings ex-
hibit special generic shapes which are extracted from em-
bedded spatial and angular line segment relationships by
cluster analysis. After employing an agglomerative hierar-
chical cluster analysis we obtain geometrical structure in-
formation features on different scales. For the classifica-
tion process we apply support vector machines (SVM) with
polynomial and radial basis function (RBF) kernels to sep-
arate the feature space by a hyperplane into 2 classes. The
method is applied to an image collection taken from the
Corel image database and compared with traditional edge-
orientation histogram features. We obtained a 88 % true
positive classification rate (recall) with an F-measure value

0f 81.3 %.

1 Introduction

Nowadays, we observe a permanent increase of image
data, resulting in a demand of qualitative and quantitative
image retrieval and classification systems. Although, many
researchers have devoted much time to the area of image
classification, it remains in general an open and challeng-
ing area.

In this paper, we deal with the hard problem of classi-
fying images of buildings. The semantic concept of how
buildings look like is not easy to define, since there exists
no common shape, size, appearance or color of a building.
Moreover, it is not entirely clear which objects do not be-
long anymore to the class of buildings, as illustrated by the
example of memorials or fountains. The problem of classi-
fying buildings has already been applied to aerial imagery
data [5] [6], exhibiting a slight different formulation of the
task than in our case, since only projections of building
roofs are visible from satellites or air-planes.

We are dealing with terrestrial images classification of
buildings [3] [7], featuring higher spatial resolution. To ap-
proach a solution of the building classification problem, 2
steps are needed. In the first step, proper shape features
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must be extracted and in the second step a classifier has
to be designed and adjusted to the feature space. Consider-
ing the first part, [8] applied perceptual grouping of L and
U-junctions to edges for describing shapes of man-made
objects. The second step consists of creating a discrimina-
tive classifier.

Our approach employs the extraction of generic shape
features, obtained by agglomerative hierarchical clus-
ter analysis. As classifier we have decided for support
vector machines (SVM), due to their great generaliza-
tion abilities. We utilize polynomial and RBF kernels for
the classification of building versus non-building of ap-
proximately 2100 images taken from the Corel image
database [11] [15]. The proposed method will be com-
pared with the well established edge-orientation histogram
[4] features.

2 Feature Extraction

We decided to use line segment features since they con-
tain important shape information of man-made objects and
especially of buildings. In the following we describe how
the line segments are computed.

The basic approach to edge detection is to compute spa-
tial derivatives of an intensity image. The computation of
the derivatives is mostly approximated by convolution tech-
niques. We are using the well known Canny edge filter [2],
which can be approximated by the derivative of a Gaussian.
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where x and y are the image co-ordinates and o is the stan-
dard deviation of the associated probability distribution.
The edge location is at the local maximum in the direction

n of the operator; G,, = %—f = nV@G, convolved with the
image g:
0
—Gp*xg=0. 2)
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The Canny detector is optimal for step edges corrupted by
white noise. To extract salient information from an edge
image, further data processing is inevitable. An edge im-
age typically shows many “edge points” and a bunch of
very short edge lines, see the second upper image in Fig-
ure 1. We perform the edge linking process by tracking
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Figure 1: The upper left image is a typical image of the
class building. The upper right panel shows the correspond-
ing edge image. The lower image shows the resulting line
segments.

edge points and merging broken lines by some vari-
able distance- and angle-tolerance inspired by [12][9]. The
left image in the second row of Figure 1 shows the ex-
tracted line segments, which are used for further computa-
tions.

2.1 Hierarchical cluster analysis

Cluster analysis is a method of multivariate statistics to
reveal homogenous groups of objects, based on their char-
acteristics. The basic task of cluster analysis is to partition a
set S consisting of m points in an Euclidian space R™ into
k clusters, where each group or clusters should be differ-
ent from other groups with respect to the same characteris-
tics.

One of the most popular clustering methods is the k-
means algorithm, where k is the fixed number of clusters
and has to be known at the onset. Since the number of clus-
ters is in our case not known in advance and additionally
may vary for different images, we have decided for hierar-
chical clustering. Moreover, we are able to omit the cluster-
center initialization problem, which has a crucial impact
on the performance of k-means algorithms. We employ ag-
glomerative hierarchical clustering which takes each entity
as a single cluster to start off with and then builds bigger
and bigger clusters by grouping similar entities together,
until the entire dataset is encapsulated into one final clus-
ter.

Before, applying the cluster analysis we introduce a spe-
cial weighting schema to cope with the interrelationships of
the line segments, their lengths, distances from each other
and their relative angles.

Wi

S = Sy x We x WL % (3)

where S,,, is a similarity matrix containing rela-
tive line segment distances and angles. W2,,, Wi,
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Figure 2: The upper left image shows all resulting clus-
ter drawn with different colors for the image in Figure 1.
For a better perception we show in the upper right im-
age, line segments which have been assigned special impor-
tance, since they exhibit the geometric structure of the orig-
inal image. The image in the lower panel shows line seg-
ments of lower importance - they might be interpreted as
’noise”.

and W2 are weights for the line segment lengths, dis-
tances from each other and angles from each other, re-
spectively. The newly formed similarity matrix comprises
generic line segment information specifying special re-
lationships of line segments. For describing buildings
we give a higher weight to “almost” parallel and per-
pendicular line segments of longer lengths. Figure 2
shows the resulting clusters after our weighting pro-
cess.

3 Support Vector Machine

Support vector machines have been recently success-
fully applied to different image classification problems [3]
[7]. For a detailed general description of support vector ma-
chines we refer to [14].

We will just review some very basics of 2-class SVM’’s.
Assume, (z,y;)1<i<n is a set of training patterns, where
each pattern x; € R™, with n representing the dimension of
the input space and y; € {—1,1} are the class labels. The
SVM will find hyperplanes that separate the training data by
a maximal margin. Thus, all elements located on one side
of the hyperplane belong to class one and elements on the
other side belong to class two. The so-called support vec-
tors are elements of the training set that lie closest to the
hyperplane. SVM’s permit us to solve nonlinear decision
problems by a kernel-based transformation fulfilling Mer-
cer’s condition [1].

K(z;, ;) = ®(x;).9(x5). 4)
Thus, a dot product can be computed in a higher dimen-
sional (possibly infinite dimensional) Euclidean space, re-



Figure 3: The present figure visualizes the content of the
used image database. Due to space limitations we show
only 8 random images where each one was chosen from
a different class.

sulting in the following decision function

N

f@) =Y (K (z,2;) +b).

i=1

5)

We are applying in our experiments the commonly used
polynomial kernels of degree p, and Gaussian radial basis
function (RBF) kernel [13].

K(x,y) = (xy +1) (6)
K(xy)=e 5t ™

4 Results
4.1 Methodology

We employ the above described approach to classify,
whether, an image belongs to the class of buildings or non-
buildings. We compare our feature extraction method with
the well known and successfully applied edge orientation
histogram feature. Both methods are compared with vari-
ous SVM parameters and kernels.

For our experiments we have taken a subset of the Corel
image collection, consisting of almost 2100 images, featur-
ing 21 different classes containing images of the following
areas: buildings, aviation, beaches, earth, leisure, win-
ter; flowers, cars, mountains, cowboys, sunsets, costal,
people, underwater, parades, minerals, mammals, jew-
elry, fireworks, farms and butterfly. The image class
memberships have been decided by Corel. The num-
ber of images per class is equal.

Some images are semantically not very consistent with
their class labels, e.g. one can find in the class earth also im-
ages of towns, bridges, mountains or clouds. However, we
did not change the original labeling for the sake of com-
parison. To give the reader an impression about the
other image classes we show in Figure 3, 8 random im-
ages out of all other classes. Due to lack of space we only
show 8 images, where each image is out of a different ran-
domly chosen class.
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Table 1: Number of images used for training and testing the
SVM.

Training Images
Class: Building | Class: Non-Building
50 39

Testing Images
Class: Building | Class: Non-Building
50 2153

Table 2: Classification results obtained with edge-
orientation histogram features. v = 0.45, C = 2z10'!.

Measure SVM-Kernel
RBF [%] | Polynomial [Deg:6] [%]
TP 78.00 80.00
F 72.81 73.64
AC 70.87 71.36
FP 36.26 37.28
TN 63.74 62.72
FN 22.00 20.00
P 68.27 68.21

4.2 Discussion

To validate the obtained results we use usual descrip-
tors obtained from a 2-class confusion matrix which con-
tained the correct classifications of each class and their mis-
matches. The parameters displayed in Table 2 and Table 3
have the following meanings:

e Recall or true positive rate (TP): Proportion of cor-
rectly identified buildings.

e F-measure (F): Measure for the overall performance
[10].

e Accuracy (AC): Proportional number of correct pre-
dictions.

e False positive (FP): Percentage of incorrect classified
non-buildings.

e True negative (TN): Percentage of correct classified
non-buildings.

e False negative (FN): Proportional number of incorrect
classified buildings.

e Precision (P): Proportion of correct classified build-
ings.

The classification results using edge-orientation his-
tograms can be seen in Table 2 and the output of our
proposed clustered line segments feature histograms in Ta-
ble 3. Note, that the SVM set-up was chosen identically
to clearly show the performance based on different fea-
tures. Figure 4 displays some classified images of the
class building. The results verify a higher discrimina-
tion power of our approach over the edge-orientation his-
togram method.



Table 3: Classification results obtained with clustered line
segments histograms. v = 0.45, C = 2x10'%.

Measure SVM-Kernel
RBF [%] | Polynomial [Deg:6] [%]
TP 88.0 86.00
F 81.30 78.07
AC 79.76 75.84
FP 28.48 34.32
TN 71.52 65.68
FN 12.00 14.00
P 75.55 71.47

2
-0.328166

Figure 4: Some classified images of the building class ob-
tained with the RBF kernel. The first number above each
image represents the class, where 2 means building and 1
non-building. The second value indicates the distance from
the hyperplane. Note, that the last image is wrong classi-
fied.

5 Conclusions

We have proposed a geometric feature extraction method
based on a special weighted hierarchical cluster analysis.
The proposed features capture the intrinsic interrelation-
ships of line segments, containing a high discriminative
power verified by support vector machines with different
kernel functions. We have compared our proposed features
with the well established edge-orientation histogram fea-
ture. The results proof that our features possess a higher
discrimination ability for the class of buildings.
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