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Abstract

The s co p e o f this p ap er is the challen gin g tas k o f clas s i-

fy in g terres trial im ages o f bu ild in gs , au to m atically . S traight

lin e s egm en ts an d their co n n ectiv ity in co rp o rate s ign ifi can t

in fo rm atio n abo u t o bject s hap es . M an -m ad e bu ild in gs ex -

hibit s p ecial gen eric s hap es w hich are ex tracted fro m em -

bed d ed s p atial an d an gu lar lin e s egm en t relatio n s hip s by

clu s ter an aly s is . A fter em p lo y in g an agglo m erativ e hierar-

chical clu s ter an aly s is w e o btain geo m etrical s tru ctu re in -

fo rm atio n featu res o n d ifferen t s cales . Fo r the clas s ifi ca-

tio n p ro ces s w e ap p ly s u p p o rt v ecto r m achin es ( S V M ) w ith

p o ly n o m ial an d rad ial bas is fu n ctio n ( R B F) kern els to s ep -

arate the featu re s p ace by a hy p erp lan e in to 2 clas s es . The

m etho d is ap p lied to an im age co llectio n taken fro m the

C o rel im age d atabas e an d co m p ared w ith trad itio n al ed ge-

o rien tatio n his to gram featu res . We o btain ed a 8 8 % tru e

p o s itiv e clas s ifi catio n rate (recall) w ith an F-m eas u re v alu e

o f 8 1 .3 %.

1 I n tro d u ctio n

Nowad ays , we obs erve a p er m an en t in c reas e of im ag e

d ata, res u ltin g in a d em an d of q u alitative an d q u an titative

im ag e retr ieval an d c las s ifi c ation s ys tem s . A lth ou g h , m an y

res earc h er s h ave d evoted m u c h tim e to th e area of im ag e

c las s ifi c ation , it rem ain s in g en eral an op en an d c h allen g -

in g area.

I n th is p ap er, we d eal with th e h ar d p roblem of c las s i-

fyin g im ag es of bu ild in g s . Th e s em an tic c on c ep t of h ow

bu ild in g s look like is n ot eas y to d efi n e, s in c e th ere ex is ts

n o c om m on s h ap e, s iz e, ap p earan c e or c olor of a bu ild in g .

M oreover, it is n ot en tirely c lear wh ic h objec ts d o n ot be-

lon g an ym ore to th e c las s of bu ild in g s , as illu s trated by th e

ex am p le of m em or ials or fou n tain s . Th e p roblem of c las s i-

fyin g bu ild in g s h as alread y been ap p lied to aerial im ag ery

d ata [ 5 ] [ 6 ], ex h ibitin g a s lig h t d ifferen t for m u lation of th e

tas k th an in ou r c as e, s in c e on ly p rojec tion s of bu ild in g

roofs are vis ible f rom s atellites or air-p lan es .

We are d ealin g with ter res tr ial im ag es c las s ifi c ation of

bu ild in g s [ 3 ] [ 7 ], featu r in g h ig h er s p atial res olu tion . To ap -

p roac h a s olu tion of th e bu ild in g c las s ifi c ation p roblem , 2

s tep s are n eed ed . I n th e fi r s t s tep , p rop er s h ap e featu res

m u s t be ex trac ted an d in th e s ec on d s tep a c las s ifi er h as

to be d es ig n ed an d ad ju s ted to th e featu re s p ac e. C on s id er-

in g th e fi r s t p ar t, [ 8 ] ap p lied p er c ep tu al g rou p in g of L an d

U -ju n c tion s to ed g es for d es c r ibin g s h ap es of m an -m ad e

objec ts . Th e s ec on d s tep c on s is ts of c reatin g a d is c r im in a-

tive c las s ifi er.

O u r ap p roac h em p loys th e ex trac tion of g en er ic s h ap e

featu res , obtain ed by ag g lom erative h ierar c h ic al c lu s -

ter an alys is . A s c las s ifi er we h ave d ec id ed for s u p p or t

vec tor m ac h in es ( S V M ) , d u e to th eir g reat g en eraliz a-

tion abilities . We u tiliz e p olyn om ial an d R B F kern els for

th e c las s ifi c ation of bu ild in g ver s u s n on -bu ild in g of ap -

p rox im ately 21 0 0 im ag es taken f rom th e C orel im ag e

d atabas e [ 1 1 ] [ 1 5 ]. Th e p rop os ed m eth od will be c om -

p ared with th e well es tablis h ed ed g e-orien tation h is tog ram

[ 4 ] featu res .

2 Featu re E x tractio n

We d ec id ed to u s e lin e s eg m en t featu res s in c e th ey c on -

tain im p or tan t s h ap e in for m ation of m an -m ad e objec ts an d

es p ec ially of bu ild in g s . I n th e followin g we d es c r ibe h ow

th e lin e s eg m en ts are c om p u ted .

Th e bas ic ap p roac h to ed g e d etec tion is to c om p u te s p a-

tial d er ivatives of an in ten s ity im ag e. Th e c om p u tation of

th e d er ivatives is m os tly ap p rox im ated by c on volu tion tec h -

n iq u es . We are u s in g th e well kn own C an n y ed g e fi lter [2],

wh ic h c an be ap p rox im ated by th e d er ivative of a G au s s ian .

( 1 )

wh ere an d are th e im ag e c o-ord in ates an d is th e s tan -

d ar d d eviation of th e as s oc iated p robability d is tr ibu tion .

Th e ed g e loc ation is at th e loc al m ax im u m in th e d irec tion

of th e op erator ; , c on volved with th e

im ag e :

(2)

Th e C an n y d etec tor is op tim al for s tep ed g es c or r u p ted by

wh ite n ois e. To ex trac t s alien t in for m ation f rom an ed g e

im ag e, f u r th er d ata p roc es s in g is in evitable. A n ed g e im -

ag e typ ic ally s h ows m an y “ ed g e p oin ts ” an d a bu n c h of

very s h or t ed g e lin es , s ee th e s ec on d u p p er im ag e in F ig -

u re 1 . We p erfor m th e ed g e lin kin g p roc es s by trac kin g
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Figure 1: The upper left image is a typical image of the

class building. The upper right panel shows the correspond-

ing edge image. The lower image shows the resulting line

segments.

edge points and merging broken lines by some vari-

able distance- and angle-tolerance inspired by [12][9 ]. The

left image in the second row of Figure 1 shows the ex-

tracted line segments, which are used for further computa-

tions.

2.1 H ie r a r c h ic a l c lu s t e r a n a ly s is

Cluster analysis is a method of multivariate statistics to

reveal homogenous groups of objects, based on their char-

acteristics. The basic task of cluster analysis is to partition a

set consisting of m points in an E uclidian space into

k clusters, where each group or clusters should be differ-

ent from other groups with respect to the same characteris-

tics.

One of the most popular clustering methods is the k-

means algorithm, where k is the fixed number of clusters

and has to be known at the onset. Since the number of clus-

ters is in our case not known in advance and additionally

may vary for different images, we have decided for hierar-

chical clustering. Moreover, we are able to omit the cluster-

center initialization problem, which has a crucial impact

on the performance of k-means algorithms. We employ ag-

glomerative hierarchical clustering which takes each entity

as a single cluster to start off with and then builds bigger

and bigger clusters by grouping similar entities together,

until the entire dataset is encapsulated into one final clus-

ter.

Before, applying the cluster analysis we introduce a spe-

cial weighting schema to cope with the interrelationships of

the line segments, their lengths, distances from each other

and their relative angles.

(3)

where is a similarity matrix containing rela-

tive line segment distances and angles. ,
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Figure 2: The upper left image shows all resulting clus-

ter drawn with different colors for the image in Figure 1.

For a better perception we show in the upper right im-

age, line segments which have been assigned special impor-

tance, since they exhibit the geometric structure of the orig-

inal image. The image in the lower panel shows line seg-

ments of lower importance - they might be interpreted as

”noise”.

and are weights for the line segment lengths, dis-

tances from each other and angles from each other, re-

spectively. The newly formed similarity matrix comprises

generic line segment information specifying special re-

lationships of line segments. For describing buildings

we give a higher weight to “almost” parallel and per-

pendicular line segments of longer lengths. Figure 2

shows the resulting clusters after our weighting pro-

cess.

3 S up p ort Vector M ach ine

Support vector machines have been recently success-

fully applied to different image classification problems [3]

[7]. For a detailed general description of support vector ma-

chines we refer to [14].

We will just review some very basics of 2-class SVM’s.

Assume, is a set of training patterns, where

each pattern , with representing the dimension of

the input space and are the class labels. The

SVM will find hyperplanes that separate the training data by

a maximal margin. Thus, all elements located on one side

of the hyperplane belong to class one and elements on the

other side belong to class two. The so-called support vec-

tors are elements of the training set that lie closest to the

hyperplane. SVM’s permit us to solve nonlinear decision

problems by a kernel-based transformation fulfilling Mer-

cer’s condition [1].

(4)

Thus, a dot product can be computed in a higher dimen-

sional (possibly infinite dimensional) E uclidean space, re-
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Figure 3: The present figure visualizes the content of the

used image database. D ue to space limitations we show

only 8 random images where each one was chosen from

a different class.

sulting in the following decision function

(5)

We are applying in our experiments the commonly used

polynomial kernels of degree p, and Gaussian radial basis

function (RBF) kernel [13].

(6)

(7)

4 R esults

4.1 M etho d o lo g y

We employ the above described approach to classify,

whether, an image belongs to the class of buildings or non-

buildings. We compare our feature extraction method with

the well known and successfully applied edge orientation

histogram feature. Both methods are compared with vari-

ous SVM parameters and kernels.

For our experiments we have taken a subset of the Corel

image collection, consisting of almost 2100 images, featur-

ing 21 different classes containing images of the following

areas: buildings, aviation, beaches, earth, leisure, win-

ter, fl owers, cars, mountains, cowboys, sunsets, costal,

people, underwater, parades, minerals, mammals, jew-

elry, fireworks, farms and butterfl y. The image class

memberships have been decided by Corel. The num-

ber of images per class is equal.

Some images are semantically not very consistent with

their class labels, e.g. one can find in the class earth also im-

ages of towns, bridges, mountains or clouds. H owever, we

did not change the original labeling for the sake of com-

parison. To give the reader an impression about the

other image classes we show in Figure 3, 8 random im-

ages out of all other classes. D ue to lack of space we only

show 8 images, where each image is out of a different ran-

domly chosen class.

Table 1: Number of images used for training and testing the

SVM.
Training Images

Class: Building Class: Non-Building

50 39

Testing Images

Class: Building Class: Non-Building

50 2153

Table 2: Classification results obtained with edge-

orientation histogram features. , C .

SVM-K ernel
Measure

RBF [% ] Polynomial [D eg:6] [% ]

TP 78.00 80.00

F 72.81 73.64

AC 70.87 71.36

FP 36.26 37.28

TN 63.74 62.72

FN 22.00 20.00

P 68.27 68.21

4.2 D iscussio n

To validate the obtained results we use usual descrip-

tors obtained from a 2-class confusion matrix which con-

tained the correct classifications of each class and their mis-

matches. The parameters displayed in Table 2 and Table 3

have the following meanings:

Recall or true positive rate (TP): Proportion of cor-

rectly identified buildings.

F-measure (F): Measure for the overall performance

[10].

Accuracy (AC): Proportional number of correct pre-

dictions.

False positive (FP): Percentage of incorrect classified

non-buildings.

True negative (TN): Percentage of correct classified

non-buildings.

False negative (FN): Proportional number of incorrect

classified buildings.

Precision (P): Proportion of correct classified build-

ings.

The classification results using edge-orientation his-

tograms can be seen in Table 2 and the output of our

proposed clustered line segments feature histograms in Ta-

ble 3. Note, that the SVM set-up was chosen identically

to clearly show the performance based on different fea-

tures. Figure 4 displays some classified images of the

class building. The results verify a higher discrimina-

tion power of our approach over the edge-orientation his-

togram method.
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Table 3: Classification results obtained with clustered line

segments histograms. , C .

SVM-Kernel
Measure

RBF [%] Polynomial [Deg:6] [%]

TP 88.0 86.00

F 81.30 78.07

AC 79.76 75.84

FP 28.48 34.32

TN 71.52 65.68

FN 12.00 14.00

P 75.55 71.47
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Figure 4 : S o m e c las s ifi ed im ages o f th e build in g c las s o b-

tain ed with th e R B F kern el. T h e fi rs t n um ber abo ve eac h

im age rep res en ts th e c las s , wh ere 2 m ean s build in g an d 1

n o n -build in g. T h e s ec o n d value in d ic ates th e d is tan c e fro m

th e h y p erp lan e. N o te, th at th e las t im age is wro n g c las s i-

fi ed .

5 C o n c lu s io n s

We h ave p ro p o s ed a geo m etric feature ex trac tio n m eth o d

bas ed o n a s p ec ial weigh ted h ierarc h ic al c lus ter an aly s is .

T h e p ro p o s ed features c ap ture th e in trin s ic in terrelatio n -

s h ip s o f lin e s egm en ts , c o n tain in g a h igh d is c rim in ative

p o wer verifi ed by s up p o rt vec to r m ac h in es with d ifferen t

kern el fun c tio n s . We h ave c o m p ared o ur p ro p o s ed features

with th e well es tablis h ed ed ge-o rien tatio n h is to gram fea-

ture. T h e res ults p ro o f th at o ur features p o s s es s a h igh er

d is c rim in atio n ability f o r th e c las s o f build in gs .

6 A c k n o w le d g m e n t s

T h is res earc h was s up p o rted by th e B M B F I - S earc h

p ro jec t.
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L . Plü m er, an d V. S tein h ag e. E x trac tin g bu ild in g s f rom

aerial im ag es u s in g h ierarc h ic al ag g reg ation in D an d

D. C om p u ter Vis ion an d I m age U n d ers tan d in g: C VIU ,

7 2 ( 2 ) :18 5 – 2 0 3 , 19 9 8 .
[6 ] S . B .- M . G erke M ., H eip ke C . B u ild in g ex trac tion f rom

aerial im ag ery u s in g a g en eric s c en e m od el an d in varian t g e-

om etr ic m om en ts . I n Proceed in gs of the IE E E /I S PR S join t

Work s hop on R em ote S en s in g an d Data Fu s ion ov er U rb an

Areas , U n iv ers ity of Pav ia, R om e (Italy ) , p ag es 8 5 – 8 9 , N ov.

2 0 0 1.
[7 ] W. H L an d C . M U . I m ag e s em an tic c las s ifi c ation by u s in g

S VM . Jou rn al of S oftw are, 14 (11):18 9 1– 18 9 9 , 2 0 0 3 .
[8 ] Q . I q bal an d J . Ag g arwal. R etr ieval by c las s ifi c ation of

im ag es c on tain in g larg e m an m ad e objec ts u s in g p er c ep tu al

g rou p in g . Pattern R ecogn ition , 3 5 :14 6 3 – 14 7 9 , J u ly 2 0 0 2 .
[9 ] P. D. Koves i. E d g es are n ot ju s t s tep s . I n Proceed in gs of the

Fifth As ian C on feren ce on C om p u ter Vis ion , p ag es 8 2 2 – 8 2 7 ,

J an u ary 2 0 0 2 . M elbou r n e.
[10 ] D. D. L ewis . E valu atin g an d op tim iz in g au ton om ou s tex t

c las s ifi c ation s ys tem s . I n Proceed in gs of the 1 8 th an n u al

in tern ation al AC M S I G I R con feren ce on R es earch an d d e-

v elop m en t in in form ation retriev al, p ag es 2 4 6 – 2 5 4 . AC M

Pres s , 19 9 5 .
[11] J . L i an d J . Z . Wan g . Au tom atic lin g u is tic in d ex in g of p ic -

tu res by a s tatis tic al m od elin g ap p roac h . I E E E Tran s . Pat-

tern An al. M ach. I n tell., 2 5 ( 9 ) :10 7 5 – 10 8 8 , 2 0 0 3 .
[12 ] A. Pop e an d D. L owe. Vis ta: A s oftware en viron m en t for

c om p u ter vis ion res earc h . I n C VPR 9 4 , p ag es 7 6 8 – 7 7 2 ,

19 9 4 .
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