
Fast Discrete Wavelet Transformation Daubechies-Four Architecture

Akhmad Mulyanto, Dani Fitriyanto, Tati R. Mengko, A .Z . R .Langi

Department of Electrical Engineering, Bandung Institute of Technology, Indonesia

email : mul@ paume.itb.ac.id

Abstract

A DSP engine for discrete wavelet transformation

(DWT) is introduced in this paper. Serial processing

DWT architecture provides a better speed and efficiency,

makes DWT better choice for image processing than DCT.

A dedicated hardware DWT architecture attached to a

general purpose microprocessor provided the

programmability of data access make possible for

dynamic scheduling for various DSP applications. This

architecture also has expandability for new processor.

1. Introduction

Image compression based on block data contains 64

pixels for one block. Because of the bandwidth of

memory, speed of fastest DCT processing still limited. For

example, DCT with 8 parallel multipliers with 64 cycles

for multiplication need 64 cycles for reading data from

memory to complete DCT one block. By using pipelined

DW T consists of 10 constant multipliers, the

transformation can be done while data transferred from

memory in 64 cycle read + 32 cycle latency. Even tough

we use many multipliers but each multiplier has only four

constant choices so that we still have efficient multiplier.

Fast DW T, as shown in Figure 1.1, can be achieved

using Daubechies DW T 4 implemented in three filter

banks. Three filter banks in tree structured develop three

stages pipeline. First filter bank consist of two LPF and

two HPF, second filter consist of two LPF and two HPF,

and third filter consist of a LPF and a HPF. Every filter

uses a selected constant multiplier separately make filters

can run parallel.

2. Discrete Wavelet Transformation

Daubechies-Four Architecture

As shown in figure 1, the DW T processor attached to a

microprocessor. The microprocessor acts as master and

DW T processor act as slave.

Forward DW T architecture can be seen in figure 3. It

needs 3 filter banks to implement forward DW T

transformation. Filter bank 1 needs 8 clocks to complete

the process, filter bank 2 and filter bank 3 also need 8

clocks to complete the process.

Registers is needed to hold temporary values between

filter banks. So every process can run simultaneously.

Figure 2 shows three consecutive 8-byte data transformed

in continues data flow.

This architecture is designed to process every 8 data. It

needs particular instruction to run the system. These DW T

instructions can be executed every 8 clocks, the remainder

of instruction produced can be used to execute other

independent resource instructions.

Figure 2Pipelined Filter

Register buffer are used within each Filter Bank. Filter

bank 1 uses 8 register buffer. Filter Bank 2 uses 4 register

buffer. Filter Bank 2 uses 8 register buffer.

Forward DW T and Inverse DW T function are

implemented in different architecture because the both

functions have different precision requirement. By using

different architecture, the parallelism of DSP engine will

be increased.

RISC DWT IDWT

 M EM ORI 1 M EM ORI 2

Figure 1 DSP Engine Architecture

 MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

3-14

72

Figure 5 Forward DWT
Figure 3 Forward DWT Architecture

D0

D1

Mux

H3

Mux

H2

Mux

H1

Mux

H0

D0

D1

D4

D5

D2

D3

Mux

L3

Mux

L2

Mux

L1

Mux

L0

Mc1

Mc2

Mc3

Mc0

Md1

Md2

Md3

Md0

E7

E4

E5

E6

E3

E0

E1

E2

M2d

Mux

2L

ACC

M2c ACC

F3

F2

F1

F0

F1

F0

M3
Mux

3L

ACC

G1

G0

24

16

16

8

24

24 24

24

 FILTER 2

FILTER 1

B1

B0

B3

B2

FILTER 3

out

Mux

L3

out

Mux

L2

clk

D0

D1

D2

D3

D2

D3

D4

D5

out

Mux

L1

out

Mux

L0

D4

D5

D6

D7

D6

D7

D0

D1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

D0

D1

D2

D3

D2

D3

D4

D5

D4

D5

D6

D7

D6

D7

D0

D1

LPF

1

HPF

1

E1

E5

E2

E6

E3

E7

E0

E4

X

X

X

X

X

X

X

X

X

X

E1

E5

E2

E6

E3

E7

FIL

3

X X X XX G1

Figure 4 Forward DWT Timing Diagram

LPF

2

HPF

2

F1

F3

X

X

X

X

X

X

X

X

F0

F2

XX

F1LPF

2

X X X

73

Figure 6 Inverse DWT

3. Experiment Result Using SystemC

System model has developed using SystemC. Fixed-

point arithmetic is used during implementation. Figure 5

and Figure 6 shows truncated bit at output of forward

DWT, and truncated bit at input/output of inverse DWT.

Bit length between 2 filters is wl, iwl is integer. Table 1

and Table 2 shows fixed-point value used during

experiment. Every SNR value is obtained from calculation

of 10000 data using random input.

As shown in table 1, the optimum multiplier coefficient

length is 13 bit (15 bit total) or 14 bit (16 bit total). Table

2 shows that the optimum multiplier-accumulator

coefficient length is 21 bit (32 bit total).

Table 1. Experiment Result using different bit length of

multiplier coefficient

Mult

coeff

Mult

Acc

wl iwl wl Iwl

SNR (dB)

6 2 17 11 32.131644

7 2 17 11 45.261646

8 2 17 11 55.573556

9 2 17 11 71.467154

10 2 17 11 81.191757

11 2 17 11 86.253077

12 2 17 11 87.608806

13 2 17 11 88.330382

14 2 17 11 88.266038

15 2 17 11 88.139136

16 2 17 11 88.078648

17 2 17 11 88.155805

18 2 17 11 88.168921

22 2 17 11 88.191617

23 2 17 11 88.191617

24 2 17 11 88.190421

32 2 17 11 88.198795

15 2 32 11 89.991053

16 2 32 11 90.050076

17 2 32 11 89.963609

22 2 32 11 89.969332

23 2 32 11 89.975059

24 2 32 11 89.962179

32 2 32 11 89.952172

Table 2 Experiment Result using different bit length of

multiplier and accumulator

Mult

coeff

Mult

Acc

Wl iwl Wl iwl

SNR (dB)

14 2 17 11 88.266038

14 2 18 11 89.093308

14 2 19 11 89.606987

14 2 20 11 89.872659

14 2 21 11 90.020483

14 2 22 11 90.069538

14 2 23 11 90.085461

14 2 24 11 90.079668

14 2 25 11 90.081116

14 2 26 11 90.079668

14 2 27 11 90.079668

14 2 28 11 90.079668

14 2 29 11 90.079668

14 2 30 11 90.079668

14 2 31 11 90.079668

14 2 32 11 90.079668

4. Error Estimation using Kiro-kiro

Algorithm

For some of image processing transformations, e.g

Discrete Wavelet Transform (DWT), Discrete Cosine

Transform (DCT), we do not need precision result. For

example in MPEG 4, H.263/H.264, transformation result

from DCT or DWT will be limited become 11 bits. The

accuracy of multiplier result is limited by maximum error.

A DWT using 12 stage multiplier 16 bit x 24 bit produce

90 dB SNR, however, for transmission process using 11

bit length produce approximately 66 dB SNR

Because of large amount data that must be processed

within image processing unit, it is needed high speed and

efficient multipliers. In order to get optimum bit length

used in multiplier, we proposed algorithm to estimate error

produced by particular bit length, we called kiro-kiro

algorithm.

Assume we want to multiply a(n+1) with b(n+1).

Multiplication result is shown as follow

)1........(..............

.*.

qpqp

qpba

where

)7..(..

)6.....(..)(

)5(..

)4....(..)(

)3.........(..

)2.........(..

0121

0121

bbbbz

jbzq

aaaaw

iawp

jb

ia

ii

j

ii

i

j

i

74

The value of p.q. can be approximated by w’z’ value

)8........(....................).........)()(('1'

))((*))((

11

1)(1)(

''

11

zsbwsb

zsbzwsbwzw zsbwsb

Assume

)(1

' iSHRaww i

and

)(1

' jSHRbzz j

hence

wz

jiSHLba

jSHLbiSHLazw

ji

ji

)()&(

))((

11

11

''

We can estimate error by following method

1010

1

)1(

andwhere

pqqp

pq
Error

By using kiro-kiro algorithm, it is known that only 6

non zero bit is needed. By making coefficient length

become 12 bits, 6 non zero bits inside all of multiplier

constant will be covered.

5. Implementation in Silicon Level

Two different RISC processor is already implemented

during this research. We called them CAPRA and

GAJAH. CAPRA is a simple load store P 8 bit, and

GAJAH is a ARM7 compatible RISC. These designs can

be tested by in circuit testing. Synthesis result using

SYNOPSYS Design Analyzer and 0.18 m technology is

shown in Table 3.

Table 3. RISC Processor CELL AREA

using 0.18 m technology

RISC CELL AREA TEST COVERAGE

CAPRA 19036.99 99.92%

GAJAH 427841.57 Not Tested Yet

The architecture at Figure 3 equipped with scan register

for in circuit testing is already synthesis using SYNOPSYS

Design Analyzer tool and 0.18 m technology. Table 4

and table 5 show the synthesis result.

Table 4. CELL AREA of DW T Architecture using 0.18

m technology

DESAIN CELL

AREA

Mc0 3928

Mc1 4943

Mc2 4753

Mc3 3649

Md0 3991

Md1 4776

Md2 4943

Md3 4244

M2c 20048

M2d 19442

M3 27133

Filter 1 60776

Filter 2 58295

Filter 3 59419

All of multipliers in Filter 1 consist of 1 pipeline,

however, multipliers in Filter 2 and filter 3 consist of 2

pipelines. All of multipliers use booth multiplier with

carry look up and Brent & Kung adder.

Timing analysis result at 20 ns clock period and circuit

testing result using SYNOPSYS TetraMax are shown in

table 5.

Table 5 Timing Analysis and Circuit Testing Result

DESAIN TIMING

ANALISYS

(SLACK)

TEST

COVERAGE

Filter 1 14.34 99.99%

Filter 2 13.21 99.31%

Filter 3 9.24 100.00%

6. Conclusion

In system-on-chip memory implementation, DW T

offers excellent speed and high efficiency. DW T also

gives better compression quality for image and video. The

optimum performance of one dimension DW T can be

reached using 32 x 16 bit multiplier. By implementing

constant multiplier, we can make a fast and efficient 32 x

16 bit multiplier. To increase parallelism, Forward DW T

and Inverse DW T can be implemented inside different

dedicated hardware. Combining microcontroller unit

(MCU) with dedicated hardware and memory inside one

chip will produce high quality DSP engine. Verification

and debugging process are done easily and fast by

modeling a system using SystemC platform..

References

[1] I. Daubechies, “Ten Lectures on Wavelets” CBMS-NFS

Reg.Conf. Series Appl. Math. SLAM, 1992.

[2] John L Hennessy, David A Patterson, “Computer

Architecture A Quantitative Approach”, Morgan Kaufmann,

1996

75

