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Abstract

We have developed a novel method for shape-based 

image retrieval based on the Support Vector Machine 

technique (SVM) and the similarity measures. The high 

accuracy classification rate of SVM, 100% for 183 images 

in 8 categories from the public domain, shows that SVM is 

one of the best tools for classification problems. A 

sensitivity test is performed to show that SVM is quite 

robust against different parameter values. After the 

category of the input image is identified, our similarity 

measures are used to retrieve the similar shapes from the 

image database. Our method can satisfy necessary 

requirements of cognitively similarity measures from 

visual perception, such as rotation, scaling and shearing 

invariance.

1 Introduction

Shape-based retrieval of similar objects from image 

databases has been increasingly studied recently. Using 

similarity measures as indexes for image retrieval can be 

found in literatures [1]. However, seldom of them can be 

implemented in a large image databases. Shape similarity 

measures are essential in matching, which deals with 

transforming a pattern and measuring the degree of 

resemblance with another pattern [2]. Researchers are 

using different shape similarity measures to retrieve 

similar images [3]. Although these measures are effective, 

they don’t particularly mention the conditions of affine 

transformation. However, image scaling or rotations are 

quite common situations because pictures are taken from 

different angles and with different sizes. To address this, 

we propose similarity measures based on the dominant 

points of the shape boundary. The advantage of these 

measures is that they are simple, efficient and invariant 

with respect to scaling, rotation and minor shearing.  

In addition, we employ Support Vector Machine (SVM) 

to solve misclassification problem in the previous method 

[4]. SVM has recently been introduced as a new technique 

for solving a variety of learning, classification and 

prediction problems. Empirical testing has shown that the 

SVN performance is better than that of the ANN in 

classification problems [5]. The results show that our 

similarity measures are effective in that they help SVM to 

classify image objects. Finally, we found that SVM is 

quite robustness against different parameter values. This 

paper is organized as follows. Section 2 presents the 

dominant point detection. Section 3 introduces the 

roposed similarity measures. Section 4 briefly describes 

the SVM classification technique. Section 5 presents the 

experimental results followed by conclusions in Section 6. 

2 Dominant point detection

The contour of an image region can be represented by 

chain codes – a starting point and a sequence of moves 

around the borders. Freeman’s chain code is one of the 

most commonly used coding schemes. The direction of 

each movement is encoded by using a numbering scheme, 

such as {i|i=0,1,… ,7} denoting an angle of 45i°

counterclockwise from the positive x-axis. The chain 

codes therefore can be seen as a connected sequence of 

straight-line segments with specified lengths and 

directions. The chain code algorithm traces the border 

pixels one-by-one and generates codes by considering 

neighborhood pixels. However, an image might possess a 

large amount of chain code information. To effectively 

reduce the information, researchers usually employ the 

dominant point’s (DP) concept. Dominant points are the 

points that hold the properties of having a high curvature 

on the contour of an image. Information on the shape of a 

curve is condensed at the dominant points. To date, most 

DP extraction algorithms consider a supporting region to 

minimize the number of points and errors [6]. However, 

these algorithms are both complicated and time-

consuming. To address this, we develop a new method for 

generating dominant points based on corner points and 

Local Symmetry Deficiency (LSD) [7]. Our new method 

is not only simple and efficient, but also produces good 

quality of dominant points. 

To effectively identify corner points, we define the total 

curvature variance TCi at a point Pi with its chain code Ci

as

1j

1j 1jijii )CC(ModTC

The function Mod(Ci+j – Ci+j-1) is defined as  
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After we calculate TCi for every point on a curve, we 

compare it with the following criteria from:  

(a) The total curvature variance TCi > 1 (lie beyond 45o),

(b) ABS(TCi)=1 (lie in 45o) and (Ci  Ci-1) and ((Ci-1=Ci-2

AND Ci-2=Ci-3) or (Ci=Ci+1 AND Ci+1=Ci+2))

(c) TCi=0 (look like a straight line) and (Ci  Ci-1) and 

((Ci-1=Ci-2=Ci-3 and Ci=Ci+2) or ( Ci=Ci+1=Ci+2 and Ci-

1=Ci-3))

(d) TCi=0 (look like a straight line) and (Ci-1=Ci+1) and 

((Ci-1=Ci-2=Ci-3=Ci-4 and Ci+1=Ci+2) or 

( Ci+1=Ci+2=Ci+3=Ci+4 and Ci-1=Ci-2)).

A point Pi that satisfies one of the criteria is considered 

as a corner point. The obtained corner points are the 

candidates of dominant points. If there is no consecutive 

corner point, all candidates are chosen. If there are two 

consecutive corner points, we choose the one with the 

smallest LSD. If multiple consecutive corner points reside 

next to each other, three consecutive corner points are 

chosen as a group. We then choose the one with the 

smallest LSD to be the dominant point in the group. The 

rationale of LSD is to choose a dominant point with high 

symmetry at its vicinity. 

3 The computation of the proposed 

similarity measures

Once we identify the dominant points, we can use them 

to calculate the similarity measures. First, we randomly 

pick one dominant point as a starting point. The lengths of 

chain codes between dominant points and the starting 

point are used as the perimeters for all dominant points; 

and the distances between the dominant points and the 

geometric center are considered as the geometric moments 

for all dominant points. We then normalize each perimeter 

and geometric moment to plot the “spectrum” of an image 

by the normalized geometric moment (y-axis) vs. the 

normalized perimeter (x-axis). The derived spectrum also 

holds very good property, as it is invariant with respect to 

image scaling, rotation, and minor shearing. For example, 

we show the spectrum of Fish14 image from Sebastian’s 

study [4,8] in Fig. 1. By the spectrum, we can obtain 

similarity measures for SVM. The first similarity measure 

is the total normalized area (TNA) – areas covered under 

the spectrum. The second measure is the total perimeter of 

the spectrum, which is the total normalized moment 

variance (TNMV). The computations are shown as follows: 

where d denotes the number of dominant points, M

denotes the moment at point i, M denotes difference of 

the moment between two consecutive dominant points, 

NP denotes the normalized perimeter length, and D

denotes the normalized perimeter difference between two 

dominant points. 

Other measures are also computed as the input features 

for SVM, including the cross-sectional normalized area 

(TCSNA) and the cross-sectional normalized moment 

variance (TCSNMV). We derive these measures by 

dividing the TNA and TNMV according to the five equal 

partitions of the y-axis. Then we obtain 5 sets of TCSNA

and TCSNMV. In total, we have 12 attributes as the input 

features for SVM.

Figure 1a. The spectrums of the Fish 14, after half size 

and double size scaling. 

Figure 1b. The spectrums of the Fish 14, after 30  and 

after 45  rotation. 

4 Support Vector M achine

SVM originated as an implementation of Vapnik’s [9] 

structural risk minimization (SRM) principle, which 

minimizes the generalization error, i.e. true error on 

unseen examples. The basic idea of SVM is to transform 

data into a higher dimensional feature and find the optimal 

hyper plane in the space that maximizes the margin 

between classes. The simplest SVM deals with a two-class 

problem - in which the data is separated by a hyper plane 

defined by a number of support vectors. Support vectors 

are a subset of training data used to define the boundary 

between the two classes. In situations where SVM cannot 

separate two classes, it solves this problem by mapping 

di

0i

1ii

2
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0i
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input data into high-dimensional feature spaces using a 

kernel function. In high-dimensional space it is possible to 

create a hyper plane that allows linear separation – 

corresponding to a curved surface in the lower-

dimensional input space. Accordingly, the kernel function 

plays an important role in SVM. In practice, various 

kernel functions can be used, such as linear, polynomial 

or Gaussian. 

In the two-dimensional case, the SVM attempts to place 

a linear boundary between the two different classes and 

orients this line in such a way that the margin  is 

maximized. The nearest data points used to define the 

margin are known as support vectors. Support vectors, not 

the number of input features, contain all of the 

information needed to define the classifier. One 

remarkable property of SVM is its ability to learn can be 

independent of the feature space dimensionality. This 

means that SVM can generalize well in the presence of 

many features. The simplest model of SVM is called the 

maximal margin classifier. It works only for data that are 

linearly separable in the feature space. Though it is the 

easiest algorithm and not very useful in real-world 

situations, it forms the building block for understanding 

the complex SVM models. 

Mathematically, the linear boundary can be expressed 

in terms of 

wTx + b = 0

In a classification problem, we try to estimate a function  

f:Rn

using training data. Let us denote the class A with A, y

= 1 and class B with x B, y = -1; (xi,yi)  Rn . If 

the training data are linearly separable then there exists a 

pair (w, b) Rn R  such that 

wTx + b , for all A

wTx + b , for all B

where w is termed the weight vector and b the bias. The 

inequality constraints can be combined to give 

y(wTx + b) 1, for all x B

The maximal margin classifier optimizes this by 

separating the data with the maximal margin hyper plane. 

Instead of maximizing 2/ w , we minimize w 2/2 

The learning problem is hence formulated as: 

minimize w 2/2 subject to the constraints of linear 

separability. The optimization problem in essence is a 

quadratic programming problem: 

2

w,

1
Minimize  (w)= w . .  (w x ) 1

2

T

b
s t y b

This problem has a global optimum solution. By applying 

the Lagrange relaxation method, the problem can be 

formulated as follows: 

2

1

1
(w, , ) w [ (w x ) 1],

2

l
T

P i i i

i

L b y b

where 1 l }  are the Lagrange multipliers. The 

Lagrangian L has to be minimized with respect to the 

primal variables w and b. Differentiating with respect to w

and b and setting the derivatives equal to 0 yields 

1

1

(w, , )
w x 0

w

and

(w, , )
0

b
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Substituting into the equation we obtain the dual form 

of the optimization problem: 

2

1 1 1 1

1 1
Maximize  w x x ,

2 2i

l l l l
T

D i i i j i j i j

i i i j

L y y

The first term of the above equation shows that the 

solution vector has an expansion in terms of a subset of 

the training patterns, namely those patterns whose 

Lagrange multiplier is non-zero. The optimization 

problem can be determined by some training points 

(support vectors) and Kuhn and Tucker extended the 

Lagrangian theory by incorporating with inequality 

constraint properties, providing a necessary and sufficient 

condition for the optimal solution. By the Karush-Kuhn-

Tuker (KKT) complementary conditions, we obtain 

[ (w x ) 1] 0, 1,..., ,T

i i iy b i l

Note that the Lagrange multipliers are only non-zero 

when y(wx+b)=1 and the vectors satisfied such equation 

are called support vectors because they lie closest to the 

separating hyper plane. Consequently, the decision 

function is determined by a small subset of training set; 

other points are irrelevant in terms of decision function. 

With support vectors, over fitting is unlikely to occur [10]. 

The decision function can be reduced to contain only 

support vectors 

* T *

1

* T *

support vectors

(x) sign( (x x ) )

sign( (x x ) )

l

i i i

i

i i i

i

f y b

y b

However, the real-world situations are not so perfect, 

they are seldom linearly separable. In order to cope with 

this issue, non-negative slack variables and kernel 

functions are introduced to deal with non-linear decision 

surfaces. Slack variables, , are incorporated into 

constraints as follows: 

2

1

1
(w, ) w

2

l

i

i

L b C

subject to 

(w x ) 1 , 0, for 1,..., ,T

i iy b i l

where C is chosen by users. C is a regularization 

parameter that controls the trade-off between maximizing 

the margin and minimizing the training error. 

5 Experimental Results 

The data used here was originated from Sebastian’s 

study [4,8]. To test our similarity measures, we randomly 

chose 8 categories with 183 pictures as shown in Fig. 2. 

All training images were classified to the right categories 
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in the image database. Each image was associated with the 

attributes, TNA, TNMV, TCSNA and TCSNMV. For a 

testing image, it was input to the SVM to identify the 

correct category first. Then the similar images were 

retrieved from the image database according to the 

category and a given tolerance of the similarity measures.  

A SVM implementation called LIBSVM1 was used in 

this work. In our experiment, we chose the Gaussian 

kernel  k(x,y)=exp(-(x-y)2 2 as our kernel function 

because it tends to achieve better performance. To 

determine the kernel bandwidth 2 and the margin C,  ten-

fold cross validation was used in the training data set to 

choose parameters that yield the best result. The 

parameters were 2 {2,1,0.1,0.01,0.001,0.0001} and 

C {1000,750,500,100,50,2}. Subsequently, this set of 

parameters was applied to the test data sets. The 

parameters chosen were 2 = 1and C = 1000. The 

accuracy of prediction rate on testing data for SVM is 

100%.

To understand the effects of changing two important 

parameters (kernel parameters 2  and margin C) on the 

quality of image retrieval, we have run 20 experiments as 

shown in Table 1. We have changed 2  from 5 to 2, 1 

and 0.5, while changing C from 1 to 10, 50, 100 and 1000, 

respectively. The quality of the image retrieval is 

measured by the prediction accuracy on both training and 

testing dataset. We observed that the parameter 

combinations yield quite stable results when C reached 10, 

(both the results on training and testing set > 95%). This 

suggests that SVM is quite robust against parameter 

selections.

Figure 2. 183 shapes in 8 categories from Sebastian[4,8]. 

6 Conclusions

As the issue of image retrieval becomes more important, 

researchers must keep on developing effective methods to 

retrieve images. A set of similarity measures that is 

invariant with respect to image rotation, scaling and minor 

shearing is proposed in this paper. Our preliminary 

experiments with the Sebastian’s data showed that these 

measures are not only invariant, but also quite effective in 

that they help SVM to achieve high (100%) classification 

rates. The image retrieval process is speeded up by 

indexing the proposed similarity measures on the image 

database. 

Table 1. Sensitivity of SVM to parameters 

2
5 2 1 0.5 

 Train. Test Train. Test Train. Test Train. Test

1 97.1 95.5 95.7 95.5 92.8 95.5 91.3 86.4

10 98.6 95.5 98.6 95.5 97.1 97.7 97.1 95.5

50 99.3 95.5 99.3 95.5 98.6 97.7 97.8 95.5

100 100 97.7 99.3 95.5 98.6 97.7 98.6 95.5

1000 100 97.7 100 97.7 100 100 99.3 97.7

Avg. 99 96.4 98.6 96 97.4 97.8 96.8 94.1
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