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Abstract

In this paper, we propose a calibration method for
catadioptric camera systems consisting of a rotation
symmetry mirror, like HyperOmni Vision, and an
affine camera. The proposed method is based on con-
ventional camera calibration and mirror posture esti-
mation. Many methods for camera calibration have
previously been proposed. In the last decade, meth-
ods for catadioptric camera calibration have also been
proposed. The main problem with catadioptric cam-
era calibration is mirror posture estimation because
the degree of freedom of a mirror posture is limited
and the accuracy of the estimated parameters is inad-
equate, owing to monlinear optimization. Our method
can estimate the siz degrees of freedom of mirror pos-
ture and can be free from the volatility of nonlinear
optimization. QOur method uses a conic curve in an
image, the borderline between mirror and non-mirror
and estimate up to for mirror posture. This method is
an application of extrinsic parameter calibration based
on conic fitting. The mirror posture estimated analyt-
ically is not unique, so we propose a selection method
for finding the best one. Because of the conic-base an-
alytical method, our method can avoid the initial value
problem arising from nonlinear optimization. We con-
duct experiments on synthesized images and real im-
ages to test the performance of our method, and dis-
cuss its accuracy.

1 Introduction

Catadioptric camera systems are used for various
applications such as security systems, environment
recognition, and robot navigation. Many kinds of
catadioptric camera are designed for various applica-
tions according to their use.

The disadvantage of catadioptric cameras is that
alignment of the mirror and camera must be exact.
If there is misalignment, the camera cannot maintain
desired optical characteristics such as a single view-
point. Misalignment problem causes various errors
in systems using catadioptric cameras. The method
used to correct misalignment depends on the purpose
for which the camera is used. In measurement appli-
cations, it is not necessary for cameras to maintain
their designed optical characteristics, but the geomet-
ric arrangement between pixels, viewpoints, and rays
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should be correct. In other words, the position of the
camera and mirror should be calibrated exactly. In
visualization applications, accurate alignment of the
camera and mirror is not required and, when errors
in viewpoint position and ray direction are within ac-
ceptable levels, the viewer does not have any sense of
incongruity. In both cases, the catadioptric camera
calibration is an important problem.

The design of catadioptric camera systems is the
combination of mirror shapes and camera models. In
these systems, catadioptric camera calibration is as
important as it is in regular camera calibration, but
is more intricate, because it includes regular camera
calibration and mirror posture estimation, and the
methods for catadioptric calibration differ according
to the kinds of mirrors, reflection, and camera models
that are used. In this paper, we propose a calibration
method for a catadioptric camera system consisting of
a rotation symmetry mirror, HyperOmni Vision [1],
and an affine camera model.

As mentioned above, the catadioptric camera cali-
bration can be divided into regular camera calibration
and mirror posture estimation. Many camera calibra-
tion methods have already been proposed, for exam-
ple, Tsai’s calibration [2], conic based methods [3, 4],
and so on. Therefore, we do not discuss the regular
camera calibration but focus on the mirror posture
estimation.

1.1 Related Work

Many catadioptric camera systems have been pro-
posed over the last decade. Typical catadioptric cam-
era systems have been proposed by Nayar [5] and Ya-
mazawa et al. [1]. The first uses an orthogonal camera
model and a parabolic mirror. Yamazawa et al. uses a
perspective camera model and a hyperboloidal mirror.
Catadioptric cameras that have non-single viewpoints
have also been proposed [6, 7].

Much work has been done on developing methods
to calibrate catadioptric cameras [8, 9]. Geyer and
Daniilidis [8] proposed a method of calibration to es-
timate intrinsic parameters of a catadioptric camera
system that consists of a paraboloid mirror and an or-
thographic lens. Strelow et al. [9] proposed a model
for relation between the mirror and camera with 6
degrees of freedom (translation and rotation). They
determined 6 parameters through nonlinear optimiza-



Figure 1: Omnidirectional image and the borderline
between mirror and non-mirror.
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and matrices.

tion. This has the advantage that translation and ro-
tation parameters are simultaneously determined, but
the disadvantage is that the accuracy of the estimated
parameters is worse and depends on the initial values
because of nonlinear optimization.

The main problem with the catadioptric camera
calibration method is mirror posture estimation be-
cause the degree of freedom of a mirror posture is
limited and the accuracy of the estimated parameters
is inadequate owing to nonlinear optimization. Our
method estimates the six degrees of freedom of mir-
ror posture and is free from the volatility of nonlinear
optimization such as the local minimum problem, the
initial value problem, and the computation complex-
ity problem. Our method uses a conic curve in an
image, the borderline between mirror and non-mirror
region, and is based on the extrinsic parameter cal-
ibration using a circular pattern[3]. Because of the
conic-base analytical method, our method avoids the
initial value and local minimum problem arising from
nonlinear optimization.

2 Catadioptric Camera Calibration

In this section, we present a calibration method for
catadioptric camera systems consisting of a rotation
symmetry mirror and an affine camera model. The
catadioptric camera calibration can be divided into
four steps: normal camera calibration, mirror posture
estimation, ray tracing, and calculation of mirror re-
flection.

Our method uses a conic curve in an image, the bor-
derline between mirror and non-mirror regions, and is
an application of extrinsic parameter calibration based
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on conic fitting. We actually applied Wu’s method [3],
based on conic fitting, to calibrate extrinsic parame-
ters.

In order to estimate a mirror posture, we assume
the following conditions: the camera is calibrated, the
rank of camera intrinsic matrix, K, is three (full rank),
the borderline between mirror and non-mirror regions
(Figure 1) is within an input image, and its radius, r,
is known.

The borderline mentioned above is projected to an
omnidirectional images as a ellipse (conic) curve, and
its equation is az? + by? + 2fx + 2gy + 2hay +c =0,
where (z,y) is in the image coordinate system. The
quadratic form of that equation is

jTQIj:()a
(1)
where
a h f
Qr=|h b g (2)
f g c

and = (z,y,1)7 is the augment vector of a point in
the image coordinate system. The relation between a
point in the image coordinate system and one in the
camera coordinate system is expressed by the follow-
ing equation:

T =sKX¢, (3)
where K is the camera intrinsic matrix and X is the
point in the camera coordinate system. By substitut-
ing Eq. 3 for Eq. 1, we obtain

$?X7TQ.X =0, (4)
where Q. = KTQ;K. By eigenvalue decomposition,
Q.= VAVT,

We consider a circle centered at (xg, yo, 2z0) on Z =
2o plane with radius r. According to Wu’s method [3],
the circle can be written in a quadratic form:

R
—Y
Qe=| 0 1 = > (5)
—zo —yo Totyp—r’
z0 Z0 zg
XTQcX =0. (6)

We consider the rotation from the coordinate system,
Or — XgYEZg (See Figure 2), to the mirror coordi-
nate system, Opnr — X Yar Zpr. The Z-axis of the mir-
ror coordinate system is parallel to the normal vector,
N¢, of the cross-section surface, Pc. To express that
rotation, we consider the rotation matrix U and the
relation can be expressed as follows.

UTAU = kQc. (7)

To solve the above equation, we obtain U by using
Wu’s method [3]. By substituting U and r for Eq.
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7, we can compute Co = [, Yo, 20], the center of the
circle. The rotation matrix, R, from the mirror coor-
dinate system to the camera coordinate system is ob-
tained by R = VU. Figure 2 shows the relationships
among each coordinate system and rotation matrices.
The center of the circle in the camera coordinate sys-
tem, C¢, is obtained by the equation: Cc = RCjp.
Since R is a rotation matrix, it can be represented by
three orthogonal unit vectors: [ri,rq,rs]. Specifically,
73 is the normal vector of the circle, the aspect of the
the mirror, in the camera coordinate system.

Ray tracing is implemented using coordinate trans-
formation. Ray tracing uses four coordinate systems
(image, camera, mirror, and world), and traces inci-
dent rays from the camera through coordinate trans-
formation (Figure 3). Finally a viewpoint, Py, and a
direction of reflected ray ,Var,,,, are calculated from
each pixel.

The mirror posture is not unique and has 4 so-
lutions by using Wu’s method. Here, we propose a
method for selecting the best one of them. In this se-
lection method, we use the rays from pixels projecting
a line far from camera.

The condition that the rays, P; + k;V;, are on a
plane, (X, N) = S, is expressed as (P;+k;Vi,N) = S,
where (,) expresses the inner product and S is the
distance from the origin. In other words, a normal
vector N exists and satisfies the equations: (V;, N) =
0and (P, N)=S.

The rays from a catadioptric camera intersecting
with a line in a 3D-space are expressed as Py +
kiVr,,.i- In the case of an aligned single viewpoint
catadioptric camera, a normal vector, IN, exists and
satisfies the following equation:

(Pai + kiViag,,,in N) = S, (8)

because the catadioptric camera can be assumed as
a normal camera. In the case of misalignment, N
does not exist. However, if the line is very far from
camera (i.e. k; — 00), we can assume that equation
8 as (Va,,.i, IN) — 0, and this can be regarded as
the case of aligned mirror. We apply this assump-
tion to select mirror posture. If the posture is cor-
rect, N exists and satisfies (Vay,,,i, IN) — 0, other-
wise IN does not satisfy the condition because the rays
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don’t intersect the line. We estimate IN by minimizing
Y(Var,,.i» IN)?. Such N is the solution of the equa-
tion, VX(Viy,,,i, IN)? = 0. And N is the eigenvector
that has the minimum eigenvalue of VX(Vay, i, IN )2
The minimum eigenvalue can be regarded as an evalu-
ation value. The mirror posture that has the minimum
evaluation value is the correct posture.

3 Experiments
3.1 Mirror Posture Estimation

We conduct experiments on synthesized images to
evaluate the accuracy and performance of our method.
At first, we make an ellipse image by projecting the
misaligned mirror. Next, we estimate ellipse param-
eters by least square error estimation. Finally, the
mirror posture is estimated by our method.

Table 1 shows the experimental result. In table
1, the translation of the ground truth is the position
of the circle’s center, the rotation of ground truth is
the normal vector of the plane including the circle,
the borderline between mirror and non-mirror regions,
the translation error is Euclid distance between the
ground truth and the estimated mirror position, Cc,
and the rotation error is the angle, inner product be-
tween the ground truth and estimated normal vector
r3. We can see that our method can be used to accu-
rately estimate the mirror posture.

The factor of the estimation error is only quanti-
zation error of projection and the error of the ellipse
estimation because the experiments are simulation. It
is impossible to completely eliminate the quantization
error. The accuracy of our method depends on the
accuracy of camera calibration and ellipse estimation.
To apply our method to a catadioptric camera system
and real images, it is important to correctly estimate
the ellipse parameters and the intrinsic parameters.
3.2 View Reconstruction

The advantage of our method is shown in image
transformation. If an omnidirectional image is trans-
formed into a perspective or panorama image assum-
ing that the mirror is aligned while the mirror is mis-
aligned, the transformed image has distortion and/or
skew. If the mirror is misaligned, we can not trans-
form omnidirectional image into perspective image be-
cause HyperOmni Vision does not keep single view-
point. But we can transform omnidirectional image
into approximate perspective image by assuming an
arbitrary point to the viewpoint. We decide the view-
point by the error, mean squared distance between the
viewpoint to each ray.

Figure 4 and 5 shows that a perspective image
transformed from the omnidirectional image (Figure
1). Figure 4 is transformed image without using cal-
ibration data, and Figure 5 is transformed image by
using calibration data. We can see the distortion and
skew in Figure 4, on the other hand we can see little
distortion and skew in Figure 5. From these experi-
mental results, our method is effective for omnidirec-
tional camera calibration.



Table 1: Accuracy of mirror posture estimation

Ground truth Error

Translation [mm)] Rotation Translation [mm] | Rotation [deg]
X Y Z X Y Z

0 0 -0.5 0 0 1 0.0701 0.464

0 0 3.5 0 0 1 0.120 0.828

-4.5 0 0 0 0 1 0.108 0.800

01 -2.19 | -0.0229 0 | -0.0209 | 0.999 0.172 1.13

-4.38 | 2.19 | -0.115 | -0.0419 | 0.0209 | 0.999 0.0506 0.333
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Figure 4: Uncalibrated perspective view.

4 Conclusion

In this paper, we propose a calibration method
for a catadioptric camera system consisting of a ro-
tation symmetry mirror, such as HyperOmni Vision,
and an affine camera. The proposed method is based
on camera calibration and mirror posture estimation.
Our method can estimate the six degrees of freedom
of mirror posture and can be free from the volatility
of nonlinear optimization. Our method uses a conic
curve in an image, the borderline between mirror and
non-mirror and is an application of extrinsic parame-
ter calibration based on conic fitting. Because of the
conic-base analytical method, our method can avoid
the initial value problem arising from nonlinear opti-
mization. We also proposed a method for mirror pos-
ture selection because Wu'’s method has 4 solutions of
mirror posture.

We conducted experiments on synthesized images
and real images to test the performance of our method,
and discussed its accuracy. In future work, we will
evaluate the accuracy of our method by 3D reconstruc-
tion with real images.
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Figure 5: Calibrated perspective view.
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