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Abstract

A novel scheme is proposed for the efficient object track-
ing by using partial projections of a sparse set of pixels to
eigenspaces. This paper shows a theoretical framework of
the sparse eigentemplate matching and its application to a
real-time face tracker. The sparse eigentemplate matching
is formalized as a partial projection onto an eigenspace.
Only using a small number of pixels, it facilitates an effi-
cient template matching. In the application, a condensa-
tion framework is combined with the sparse eigentemplate
matching in order to make a robust and efficient tracker.
Experimental results show that the condensation tracker
can track a face in real time even when the lighting con-
dition changes.

1 Introduction
This paper discusses an object tracking method charac-
terized by partial projections of a sparse set of pixels to
eigenspaces. While eigenspaces are useful for the ob-
ject/face detection as well as for the object/face recogni-
tion, it is not so easy to apply them for efficient and robust
tracking. Some robust algorithms have proposed for the
object/face detection using eigenspace techniques [1]. In
these methods, however, iterative projections have been
made along with outlier detection. The iterative projec-
tion approaches often suffer from efficient implementa-
tion and the “ breakdown point” problem. In order to solve
the problem, this paper proposes a novel tracking scheme
without using the iterative projections.

2 Object Representation

2.1 Normalized Image Space
Normalized Image Space(NIS) is introduced by Shaku-
naga and Shigenari[4] for realizing a robust face recog-
nition using eigenspaces. In the present paper, an
appearance-based tracking is discussed using eigenspaces
in NIS because illumination-insensitive eigenspaces can
be easily constructed in NIS. The NIS concept is briefl y
summarized as follows: Let an n-vector X denote an orig-
inal image with n pixels, and 1 denote an n-vector of
which every element is 1. Let n-IS denote the image space
consisting of all images with n pixels. The normalized
image x of an original image X is then defined as

x = X/(1T
X). (1)

Thus, x is normalized in such a way that 1
T
x = 1. Nor-

malized Image Space (NIS) is the image space consist-
ing of all normalized images of a given image space. Let
n-NIS denote the NIS of n-IS. Then any nonzero image
X( 6= 0) in n-IS can be mapped to a point in n-NIS.

NIS provides an image representation that is invariant
to changes in light intensity as long as the original image
includes neither saturated points nor shadows.

2.2 Normalized Eigenspace
When an image class is given, an m-dimensional
eigenspace is constructed in n-NIS by the conventional
PCA from the mean vector and covariance matrix

x =
1

K

K∑

k=1

xk and Σ =
1

K

K∑

k=1

(xk − x)(xk − x)T ,

  MVA2005  IAPR  Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

1-4

13



where K is the number of images in the class.
Let Λ denote a diagonal matrix in which diagonal terms

are eigenvalues of Σ in descending order, and Φ a ma-
trix in which the i-th column is the i-th eigenvector of Σ.
Then PCA implies Λ = ΦT ΣΦ. Using a submatrix Φm

of Φ, which consists of m most significant eigenvectors,
the projection x

∗ of x onto the eigenspace is given by

x
∗ = ΦT

m(x − x).

In our problem, m is a small number because most object
surfaces are approximated by a Lambertian surface. Let
x

] denote the residual of the projection,

x
] = x − x − Φmx

∗. (2)

Let us call the m-dimensional eigenspace the Normal-
ized Eigenspace (NES). We also use another notation,
〈x, Φm〉, which explicitly specifies x and Φm.

2.3 Partial Projection
Let us discuss an optimization of partial projection when
a NES is given for the target object and effective pixels
for the partial projection are known. For this purpose,
we define a part indicator matrix P ; an n × n diagonal
matrix, of which each diagonal element is 1 or 0. P in-
dicates which pixels are effective for partial projection. If
the j-th diagonal element, pj j , is 1(0), the j-th pixel is
effective(ineffective) for partial projection. When all the
pixels are effective, P becomes an identity matrix, I . All
P satisfy P = PT = PPT .

Suppose a NES 〈x, Φm〉 is given. An image X in n-
IS is mapped to n-NIS by x = X/(1T

X). Then, the
conventional definition of optimum projection reduces to
the minimization of

εI = (x′ − Φmx
∗)T (x′ − Φmx

∗), (3)

where x
′ = x − x. It is well-known that this problem

reduces to a linear projection:

x
∗ = ΦT

mx
′ = ΦT

m(x − x). (4)

Given P , the partial projection problem is defined as
the minimization of

εP = (x′ − Φmx
∗)T P (x′ − Φmx

∗)

= (Px
′ − PΦmx

∗)T (Px
′ − PΦmx

∗). (5)

The minimization of εP is equivalent to

Px
′ = PΦmx

∗. (6)

Eq.(6) is solved if x
′ is known. In general, however, the

partial projection problem is not solved because x
′ cannot

be calculated directly from the given partial image, PX.
Assuming β = 1

T
X, we can get a relation

x
′ =

1

β
X − x. (7)

Substituting Eq.(7) into Eq.(6) results in a set of linear
equations:

PX = [PΦm Px ]

·
βx

∗

β

¸
= P Φ̃mx̃

∗. (8)

This is solved by

x̃
∗ = (P Φ̃m)+PX, (9)

where

(P Φ̃m)+ = (Φ̃T
mP Φ̃m)−1(P Φ̃m)T .

In the solution, the pseudo-inverse matrix is calcu-
lated from Φ̃m and P . Once the pseudo-inverse has been
formed, the partial projection problem reduces to (m + 1)
p-vector inner products where p = tr(P ).

3 Sparse Eigentemplate Matching

3.1 Computational cost and performance
As stated in 2.3, the partial projection problem reduces to
calculation of (m + 1) p-vector inner products once the
pseudo-inverse is calculated, where m-dimensional NES
is used and p = tr(P ).

If P is constant in the search, therefore, the computa-
tion cost is very low and proportional to (m + 1)p. On
the other hand, if P is variable in the search, additional
computation is rather heavier because the calculation of
the pseudo-inverse is much more time-consuming than the
calculation of the inner products. This is the first key point
for the efficient algorithm design, and a RANSAC algo-
rithm with random point selection is not a possible choice
for our purpose.
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3.2 Point selection and its feasibility

It is well known, a Lambertian object has a 3-d eigenspace
for a point light source in infinity. A 2-d eigenspace is
given for the object in the NIS. Since the eigenspace is due
to the photometric property of Lambertian surfaces[5], we
can select a small set of points when we know the object
shape.

On the other hand, eigenspaces can be constructed with
a class of objects which may include variations in shape
and surface properties. In the cases, eigenspaces cannot
be simply interpreted by photometry or physics. There-
fore, we have to establish a constructive method for the
point selection when an eigenspace is given.

3.3 Sparse point set selection

After several heuristic trials, we have arrived at a good
heuristic algorithm to the problem: The algorithm selects
a point set in the domain of x. Let the average image
partitioned into s subregions. In each subregion, the al-
gorithm selects two points which provide the regional ex-
tremal (maximum and minimum) intensities. The algo-
rithm provides a 2s-point set in the image. As discussed
in the following section, it works well when 4 ≤ s ≤ 6 4.

In our experiments, sparse template matching is imple-
mented using a 2-d eigenface, of which the mean vec-
tor and the first and second eigenvectors are as shown in
Fig. 1. The 2-d eigenface is constructed from 50 faces
under 24 lighting conditions, respectively. Therefore, the
2-d eigenface can span various kinds of lighting condi-
tions as shown in the figure. Figure 2 shows six sparse
templates used for the sparse template matching. Five
of the six templates show five sets of 8 points, P1-P5,
which are used for partial projection. Out of 1936 pixels
in the entire template, only 8 pixels indicated by “ x” are
selected by the regional extremal criterion. In P1, four
maximum/minimum pairs are selected in each quadrant.
In P2-P5, four maximum/minimum pairs are selected in
each quadrant of each quadrant. If different point sets, in-
dicated by Pi and Pj , are used for partial template match-
ing, Eq.(5) provides two measures εPi

and εPj
which are

independently calculated in the two point sets. Although
the two measures formally enable us to judge which point
set provides a better result, they do not provide a fair com-
parison. That is because the measures highly depend on

x 1st eigenvector 2nd eigenvector

Figure 1: Two dimensional eigenface.

P1 P2 P3

P4 P5 P ∗

Figure 2: Sparse eigentemplates

the amount of noise and which point set includes more
noise. To prevent the unfair comparison, we use a com-
mon point set P ∗ with any point set Pi. That is, a com-
mon measure ε∗ is calculated over a common point set
P ∗ when a projection x̃

∗ is determined in any point set
Pi. The common point set solves the problem of unfair
comparison among different sparse sets.In our implemen-
tation, P ∗ is also constructed by the regional extremal cri-
terion. That is, P ∗ consists of 16 maximum/minimum
pairs selected from 16 subregions. Furthermore, a ro-
bust norm is used for the evaluation instead of the L-2
norm. That is, residuals for 32 points in P ∗ are summed
up with a robust estimation by Geman-McClure function
ρ(x) = x2/(c2 + x2), where c = 0.5/n.

3.4 Sparse template condensation

The condensation algorithm is essential for the robust
tracking while sparse template matching enables effi-
cient tracking. Robust and efficient tracker can be im-
plemented by appropriately combining the condensation
framework and sparse template matching. Figure 3 shows
an overview of our condensation tracker which utilizes
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sparse eigentemplate matching. Let us call the conden-
sation tracker the sparse template condensation. The
sparse template condensation is formalized in the three-
step condensation algorithm along with sparse eigentem-
plate matching in the measure step.

initial position

sparse eigentemplate matching

condensation method

drift estimated positiondiffuse measure

PCA + point selection

sparse eigentemplate output sequenceinput sequence

Figure 3: Overview of sparse template condensation.

In the condensation algorithm, a lot of samples (or par-
ticles) are propagated in parameter space. This scheme
can also be available to selection of part indicator matri-
ces. That is, a particle includes the indicator i as well as
six pose parameters.

3.5 Details of sparse template condensation
3.5.1 Pose space and propagation process

In the original condensation algorithm [3], a sample-set
{s(1), · · · , s(K)} is generated in the neighborhood of the
present pose. In our implementation, an eigentemplate is
readily made up, and we assume the template is included
in a plane. The template plane is basically transformed in
6-d pose space that covers 3-d rotation and 3-d translation.
Thus, a sample (or particle) is generated and propagated
in 6-d pose space. When a pose is given in the parameter
space, a transformation matrix T can be calculated and it
is applied for an input image. That is, TX is used instead
of X for partial template matching with taking the 6-d
pose parameters into account.

The propagation process is set out in terms of discrete
time t. The state of the modeled object at time t is de-
noted by wt and its history is Wt = [w1, · · · ,wt]. Sim-
ilarly, the set of image features at t is zt with history
Zt = [z1, · · · , zt].

Let {s
(k)
t , k = 1, · · · , K} denote a time-stamped

sample-set, and π
(k)
t is a weight associated with a sample

s
(k)
t , where π

(k)
t approximately represents the conditional

state-density p(wt|Zt) at time t.

3.5.2 Drift step

In our implementation, when a weighted sample-set
{(s

(k)
t−1, π

(k)
t−1), k = 1, · · · , L} of p(wt−1|Zt−1) is pro-

vided from time-step t − 1, two types of assumptions
are evenly selected for obtaining the sample set: a half
of samples are generated from no-move assumption and
the other half samples are generated from constant-move
assumption in the pose space. Thus, we get a weighted
sample-set consisting of {(s(k)

t−1, π
(k)
t−1/2), k = 1, · · · , L}

and {(s
(k)
t−1+wt−1−wt−2, π

(k)
t−1/2), k = L+1, · · · , 2L}

where wt is an estimated pose in time-step t.

3.5.3 Diffuse step

In the diffuse step, K(> 2L) samples are generated from
2L samples by selecting a given sample s

(k)
t−1 with prob-

ability π
(k)
t−1. By adding a white Gaussian noise to each

selected sample, we can get a new sample set s(k)
t .

3.5.4 Measure step

In the measure step, sparse template matching provides
a measure ε∗ for each sample s

(k)
t , where transformation

matrix T and sparse template indicator Pi are generated
from s

(k)
t . Let ε∗(k) denote the ε∗ value for s

(k)
t .

After selecting most similar L samples from K sam-
ples, a weight for a sample s

(k)
t is calculated by

π
(k)
t =

1/ε∗(k)

∑L
j=1 1/ε∗(j)

.

Thus we can estimate a pose of the object at time-step t
by

wt =

L∑

k=1

π
(k)
t s

(k)
t .

4 Experimental result
Figure 4 shows a tracking result of the sparse template
condensation when it is applied for an image sequence

16



t = 1 t = 3 0

t = 47 t = 53

t = 7 5 t = 9 0

Figure 4: Tracking result using 1-d eigenface.

which includes a 3d rotation and illumination change.
The condensation tracker successfully tracks a face us-
ing a set of sparse template matching at frame rate. The
face tracking is compared among 0-d, 1-d, and 2-d eigen-
faces, where the m-th eigenface is given by 〈x, Φm〉 and
Φ̃0 = x. Table 1 compares success rates, estimation er-
rors and processing time among 0-d, 1-d, and 2-d eigen-
faces. This table shows that success rates are 100 % when
1-d or 2-d eigenfaces are used. Processing time is almost
independent of the dimension of eigenfaces. Concerning
the estimation errors, the 1-d eigenface provides the best
result among the three eigenfaces.

5 Conclusions

A novel condensation tracking scheme is proposed based
on the sparse eigentemplate matching. The basic idea is

Table 1: Tracking performance vs dimensionality of
eigentemplate

m Success rate Error[pixel] Proc. time
[%] mean st.dev [msec/frame]

0 95.7 3.09 0.64 10.5
1 100.0 2.23 0.15 10.6
2 100.0 2.68 0.12 10.7

the use of partial projection instead of iterative robust pro-
jection in order to prevent the “ breakdown point” prob-
lem. We also show a heuristic but practical method to se-
lect a small point set which facilitates the efficient track-
ing. We have confirmed that the proposed scheme works
well for the face tracking in 3-d space. We hope the sparse
template matching will collaborate with other methods re-
lated to the motion tracking [1, 2, 6].
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