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Abstract 

This paper proposes an original method for the 3-D re- 
construction of seabed from multiple sidescan sonar 
images. The proposed method adopts a stereo-like vision 
approach based on a combination of the GPS positioning 
and the image matching technology to correspond among 
multiple sidescan sonar images taken from different view- 
mints. and then estract the 3-D structure information of 
'seabed from the images according to the relation of the 
spatial position. This method consists of three stages of 
processing. First, the sidescan sonar is tracked in 3-D space. 
Second, based on maximum slant range, the corresponding 
sub-image is extracted from each sidescan sonar image. 
Third, the method of multi-step gray-level prqjective 
matching is applied to find the corresponding points among 
the sub-images. Finally, according to the spatial relation in 
3-D space, the 3-D structure of seabed is estimated and 
reconstructed. The experiment with EdgeTech's DFIOOO 
sidescan sonar and JRC's DGPSZOO GPS is reported. 

1 Introduction 

Sidescan sonar plays an important role in ocean investi- 
gation, for it provides higher quality underwater acoustic 
images than other sensors such as optical camera [I]. One 
of the applications of sidescan sonar is the 3-D reconstruc- 
tion of seabed [2]. As we know, getting the information 
about 3-D structure of the seabed is important for safe 
navigation, positioning of offshore installations such as oil 
platforms or oil and gas pipes, recognition of topographical 
features of the seabed etc., so it becomes necessary to find 
an efficient method for 3-D reconstruction of seabed. 

But since typical sidescan sonar is poor for determining 
accurate bathymetric positions [3], its application was lim- 
ited in 2-D analysis such as observation, segmentation and 
classification of seabed. For 3-D analysis, we usually have 
to deploy multi-beam sonar to obtain the bathymetric 
measures [4]. This technology based on beam-forming of- 
ten has less spatial resolution capability, map smaller 
sectors, so it leads to increase the costs of investigation. 

At present, several approaches are developed. Johnson 
and Herbert applied shape from shading techniques to re- 
construct elevation maps of the seabed from sidescan sonar 
backscatter images and sparse bathymetric points 
co-registered within the image [5]. This method depends 
on a scattering model, so depth information was not neces- 
sary. But some of the scattering parameters have to be 
estimated correctly and some parameters have to be set up 
empirically. Zerr and Stage developed an algorithm to 
compute the volume information from the shadow infor- 
mation obtained from a sequence of sonar images [6 ] .  Dura, 

Lane, and Bell estended this work to automatic 3-D 
reconstruction of mine geometry [7]. In these approaches, 
only a few sonar parameters, such as the altitude and r a n g  
are needed and the computational requirements are lower. 
But the shadow information couldn't always be obtained. 

In this paper we thus address the 3-D reconstruction 
problem of seabed from multiple sidescan sonar images, by 
a stereo-like vision approach based on a combination of the 
GPS positioning and the image matching technology to 
correspond among multiple sidescan sonar images taken 
from different viewpoints, and then extract the 3-D struc- 
ture information of seabed from the images according to 
the relation of the spatial position. 

In Section 2 of (his paper we present a stereo-like vision 
model. We describe the algorithms for correspondence of 
the multiple sidescan sonar images in Section 3. In Section 
4, we report esperimental result and summarize the con- 
clusions. 

2 Stereo-like Vision Model 

As we know, the range information is included in the 
sidescan sonar image, but sidescan sonar image does not 
directly convey the elevation of the seabed. Because sides- 
can sonar consists of one cylindrical source that creates a 
conic acoustic beam pattern that is symmetric around the 
axis of the source, and it will measure the range to the first 
surface it encounters within the cone and the intensity or 
echo of the return, however, the position of the surface 
cannot be localized within the cone (31. 

To solve this problem, we propose a way in which given 
knowledge of the spatial relation of sidescan sonar imaging, 
if the same object on the seabed is 'seen' by the sidescan 
sonar from different positions, it is possible to measure its 
3-D position using two or more sidescan sonar images like 
the stereo vision way of optical camera. We call ths  tech- 
nique 'stereo-like vision'. 

Geometrically, let us consider two coordinate systems, 
virtual pro-iective plane coordinate system U-V and object 
space coordinate system X-Y-Z (Fig. I). 

Fig. 1. Geometry of sidescan sonar image 
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In the virtual projective plane coordinate system U-V, 
the distance in the range direction of sidescan sonar corre- 
s ~ o n d s  to U-asis. the distance in the azimuth direction of 
sidescan sonar corresponds to V-asis, and the point P' (14,  

V) is a projection of the echo intensity from the point P (.r, 
v ,  z) on the surface of object in the olject space coordinate 
system X-Y-Z. In the object space coordinate svstem 
X-Y-Z, X-asis and Y-asis are parallel to U-asis and V-asis 
respectively. Let 0' (110, v0) be original point of U-V and 0 
(.%,yo, zO) be original point of X-Y-Z, the relation between 
P' (11, V) and P (.r,y, z) IS Ideally given as follow: 

where, y =yo. 

Now let us assume that sidescan sonar tracked along par- 
allel course (Fig. 2). 

Fig. 2. A spatial series of sidescan sonar images 
taken at different viewpoints 

We can estimate their positions in 3-D space according 
to the formula of spatial relation as follow: 

where, i = I, 2, ... , n. 

Here, i is the number of viewpoint, (.r,,,v,. z,) is the posi- 
tion of viewpoint I ,  and (.r, y, z) is the position of the point 
on the ob.iect surface, q is slant range from the viewpoint i 
to the p i n t  on the object surface. Since the sidescan sonar 
tracked along parallel course, we can consider the different 
(usually two) viewpoints as in same vertical plane, so for- 
mula (2.2) can be rewritten to: 

r12 = (.rl - .r)' + (z, - 2)' , (2.3) 

where, i = I ,  2, ... , n. 

There is a problem remained above how to correspond 
the points that is same point in the real 3-D space between 
the different images. This is referred to as the matching 
problem in computer vision, which is considered a chal- 
lenging task due to its difficulty. Contributing factors to 
this difficulty include the lack of image texture, obiect oc- 
clusion, and acquisition noise, which yield frequently in 
real imaging applications [8]. In order to solve such prob- 

lems, there are a lot of methods developed over the last 
decades. Generally, they can be classified to two types, 
area-based and feature-based [9]. 

In this work, we developed a new method, Multi-step 
Gray-level Projective Matchng (MGPM) with GPS Posi- 
tioning, which bases on combining the positioning 
technolog of GPS and the matching technology of the 
computer vision. 

3 Algorithms for Correspondence 

Step I: Sensor Tracking in 3-0 Space 
Sensor trachng is to get a set of position data of sides- 

can sonar in the real 3-D space. 
For horizontal tracking, a set of synthesized GPS data 

are used. As the GPS is not directly located on the sidescan 
sonar, it is possible that geometric distortions caused by 
movement of the sensor that do not rely on onboard navi- 
gation measurements [lo]. In this work, an esperiential 
value is set as initial layback, and then corrected by the 
motion estimation method introduced later. 

For vertical tracking, as we h o w ,  for each impulse, the 
reverberated signals from the seabed right under sidescan 
sonar are generally the fastest. It means first bigger change 
of grav-level from centerline to both sides on the image 
will be measured. A running mean filter is used to reduce 
noise and an average depth is considered as the plane of 
seabed (Fig. 3). 

Fig. 3. Tmcking for vertical position of sonar: 

(a) First bigger change of gray-level from center- 

line to both sides; (b) Depth and average depth. 

Step 2: Extraction ojCorrespnding Sub-images 
In order to match multiple sidescan sonar images, the 

frame of corresponding sub-image should be determined. 
Under the frame, corresponding sub-image can be es- 
tracted from each image, and all corresponding sub-images 
can be registered each other to find corresponding points. 

First, as the maximum slant range of sidescan sonar 
should be set up beforehand and the average depth from 
sidescan sonar to the bottom has been known, the masi- 
mum ground range that is covered by the sidescan sonar 
can be calculated according to the geometry of sidescan 
sonar image. The slant range image then is projected to the 
ground range, which the projected image is called 'ground 
range image'. 

Second, as we ho\v,  the range direction is orthogonal to 
azimuth direction, so that the ground r a n g  image can be 
registered to a global 2-D map along the normal direction 
of the wake of sidescan sonar. Similarly, another over- 
lapped sidescan sonar image can be registered too. 

Third, the liame of corresponding sub-image overlapped 
each other can be determined and the corresponding 
sub-images can be estracted (Fig. 4). 



-- krnn B. Extraction of Feature Points 
After the motion is detected and corrected in the azimuth 

direction, the search area of corresponding points over two 
images can be limited in a smaller area along the azimuth 
direction to reduce the computational burden of matching. 
So, first, we separate the sub-images into several zones 

(a) (b) 
along the azimuth direction, and then use the gray-level 
projective distribution both along the azimuth direction and 

Fig. 4. Frame determination of corresponcling the range direction in the each zone again. We select the 

sub-images: (a) Register to a global 2-D cross points as the feature points where there are bigger 
changes of the projective distribution (Fig. 6). 

map; (b) Frame of corresponding sub-images. 

Step 3: Multi-step Grav-leid Projectii*e Matching 
A. Motion Estimtion in Azimuth Direction 
As esplained above, the misalignment of horizontal po- 

sition esists between the different images. It is difficult to 
directly synthesize the GPS data and the sidescan data. 
About motion estimation, a lot of approaches have been 
developed over the last decades in the several relative 
fields such as stereovision and analysis of image sequences 
[ I l l .  In many cases the input sidescan sonar images are 
strongly corrupted by speckle noise [3]. Therefore, we 
studv methods using gray-level projection to reduce the 
noise effect. 

First, all gray-level of the pixels are projected to the 
azimuth direction over two images. Let pay-level of the 
pixel (u,  v) and the range width in imageJ be GI ( t r ,  v) and 
hl ,  respectively. The projective distribution of number u is 
defined as: 

1 
Pui (u) = - ;I: GI (11, V )  , 

h~ v=I 
(3.1) 

In same way for imageh, the projective distribution of 
number u is defined as: 

Next, Getting a center part where larger motion estima- 
tion may be looked for from the projective distribution for 
each image, let Pyl be as reference, shifting PI?, compare 
these two projective distributions (Fig. 5). The motion es- 
timation will be found when the difference between these 
two projective distributions is the smallest. The difference 
degree Dy is defined as: 

., . , , 

Gmy.lonl projective 

cbslnbul~on m sub.nmge 2 

Fig. 5. Motion estimation using gray-level 

Fig. 6. Extraction of feature points 

C. Mutual Matching 
After selected the feature points, we match the feature 

points over the different images. 
Since the occlusion problem exists in sidescan sonar 

imaging, we use a mutual matching between the different 
images [12]. First, let one feature point in image $I is as 
reference; search the corresponding point in the imagefi. 
Nest, let the feature point found above step in imagefi is 
as reference, search the corresponding point in the imageJ. 
Just only mutual matching is successful, the points are 
considered as confident correspondent ones (Fig. 7). 

Fig. 7. Mutual matching: 

4 Experiment and Conclusions 
To validate proposed method for 3-D reconstruction of 

seabed, we have carried out an experiment with 
EdgeTech's DF1000 sidescan sonar and JRC's DGPS2OO 
GPS in Seto inland sea, Japan. 

projective distribution 
Fig. 8. A pair of input sidcscan sonar images 



Fig.8 is a pair of input sidescan sonar images taken 
along a set of parallel courses. 

Fig. 9. Extraction of corrrsponding sub-images: 

(a) Image I; (b) Image 2. 

Fig. 9 shows a process for extraction of corresponding 
sub-images. 

(a> (b> 
Fig. 10. Result of motion estimation and correc- 

tion in azimuth direction: (a) Before correction; 
(b) After correction. 

Fig.10 shows a result of motion estimation and correc- 
tion in azimuth direction using gray-level pro.jective 
distribution. 

Fig. 11. Result of mutual matching 

Fig. I I shows a result of feature points matching over 
two images. 

Finally, the 3-D structure of seabed was estimated by 
using a pair of range data sets obtained by matching feature 
points over hvo images. Fig. 17 shows the result. 

In this paper, we have presented a stereo-like vision ap- 
proach to the 3-D reconstruction problem from multiple 
sidescan sonar images, which used a combination of the 
GPS positioning and the image matching technology. The 
multi-step grav-level projective matchlng was applied to 
match the corresponding points between the corresponding 
sub-images. The esperimental result showed the proposed 
method is valid. 
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Fig.12. The 3-D reconstruction of seabed 




