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Abstract 
2 Related Works 

Gaussian mixtures are often used for data modeling in 
many real-time applications such as video background 
modeling and speaker direction tracking. The real-time and 
dynamic nature of these systems prevents the use of a 
batch EM algorithm. Currently, online learning of mixture 
models on dynamic data is achieved using an adaptive fil- 
ter coupled with reassignment rules. However, 
convergence is very slow with a fixed learning rate typi- 
cally employed in existing systems. In this report, we 
utilize an adaptive learning rate schedule to achieve fast 
convergence while maintaining adaptability of the model 
after convergence. Experimental results show a dramatic 
improvement in modeling accuracy using an adaptive 
learning schedule. Application of the proposed learning 
algorithm for video background modeling directly leads to 
improved approximation and robustness. 

1 Introduction 

Background subtraction is an early and essential proc- 
essing component in many video analysis systems. 
Considering that point distribution observed at any pixel is 
often multimodal and time-varying in most real world ap- 
plications, several researchers have proposed using 
Gaussian mixtures for pixel modeling [2],[3],[8]. The 
real-time and dynamic nature of the problem prevents the 
use of a batch EM [ I ]  or an incremental EM [6] algorithm 
developed for mixture learning on stationary distributions 
that require storage of all observed data. These systems 
use an online learning algorithm that adapts to distribution 
changes via a recursive filter coupled with reassignment 
rules. However, the commonly used method of [8] con- 
verges very slowly. In this paper, we describe an 
improved method for online, adaptive mixture learning. 
We utilize an adaptive learning rate schedule to achieve 
fast convergence while maintaining model adaptability 
after convergence. Experimental results show a dramatic 
improvement in modeling accuracy using this technique 
and lead to a direct improvement in video background 
segmentation performance. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we first provide a brief description of existing 
methods and point out the fundamental difference in our 
approach. The proposed algorithm is then described in 
detail in Section 3. Experimental results on simulated data 
as well as real video data are reported in Section 4, fol- 
lowed by conclusions. 

Since the original proposal of using Gaussian mixtures 
for modeling pixel distributions in video [2], several re- 
searchers have followed the formulation of Stauffer and 
Grimson [8] for online learning of adaptive Gaussian mix- 
tures. At each time step, parameters of the Gaussian that 
best matches the new observation x( t )  are-updated using a 
recursive filter B(t) = (1 - a )  .B(i - I )  + a .  Q(x;t) where a 
controls the temporal rate of  adaptat~on. If x does not 
match the current model well, one of the Gaussian is reas- 
signed to the new point. The weights for all Gaussians are 
also updated depending on whether it matches x and re- 
normalized to 1. Through recursive filter learning and 
Gaussian reassignment, the system is able to model dy- 
namic distributions. 

The recursive low-pass filter learning is adequate for 
adapting to slow changes, but its convergence in the initial . - - - 
stage of parameter learning is unnecessarily slow. Con- 
sider the situation where a single Gaussian is assigned to 
learn a sequence of identical points. The low-pass algo- 
rithm initializes the mean to x and the variance to V,. On 
subsequent iterations, since x(t) - p ( t )  = 0 , a 2 ( t )  would 
converge to 0 at a rate of (I - a ) '  . For a typical a value of 
0.01, it takes approximately 460 iterations to reach 1% of 
Vo. It takes ten times as long for a =0.001. Therefore, the 
distribution must remain stationary for a long time to 
achieve adequate approximation. Although faster conver- 
gence can be achieved with a largera , doing so would 
result in an unstable algorithm. With a low retention fac- 
tor, the model will chase wildly after each new data point. 

While recursive filter learning is necessary to track dis- 
tribution changes, a more efficient strategy can be used to 
speed up convergence during initial parameter estimation. 
We point out that the learning rate for parameter estimation 
plays a different role From the retention factor controlling 
the adaptability of the model and, therefore, requires a 
different schedule that is adjusted through time. The 
former has the goal of achieving fast convergence on data 
distribution while the latter aims to adapt to slow migration 
in current data distribution and maintain model stability. 

The same observation was made by other researchers [4], 
who proposed using expected sufficient statistics update 
equations at the initial learning stage to improve conver- 
gence, where the initial stage consists of the first L=lla 
samples. After the initial stage, learning switches to a set 
of L-recent window update equations. By storing suffi- 
cient statistics of the first L samples in the early learning 
stage and applying the appropriate term weighting, con- 
vergence can be improved. However, this explicit division 
of learning stages can only be applied at initialization, 
when in fact subsequent Gaussian reassignment also suf- 
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fers from slow convergence. In addition, we have found 
that the L-recent window update equations seem to be 
flawed and can lead to divergence. 

The problem of selecting an appropriate learning rate 
schedule for online parameter estimation has been ad- 
dressed in the literature. A detailed discussion on the 
necessary conditions for an effective learning schedule for 
stationary distribution can be found in [7]. It has been 
shown that with a Ilt schedule, the online EM algorithm 
can be considered a stochastic approximation to the batch 
EM algorithm and will converge to a local maximum of the 
likelihood function. 

We propose a solution for fast online adaptive mixture 
learning by combining recursive filter learning with a Ilt 
learning rate schedule. To allow modeling of distribution 
changes, we use a modified Ilt schedule that converges to 
a instead of 0 .  In addition, since Gaussians are not up- 
dated with every x and may be reassigned, we apply a 
separate learning rate schedule to each Gaussian. Details 
of the proposed learning algorithm are described in the 
next section. 

3 Algorithm Description 

We developed a new algorithm by incorporating a modi- 
fied adaptive schedule into the recursive filter learning. 
A counter is introduced for each Gaussian in the mixture to 
keep track of how many data points have contributed to the 
parameter estimation of that Gaussian. Each time the pa- 
rameters are updated, a learning rate is calculated based on 
this counter, and the counter is incremented. When a Gaus- 
sian is reassigned, the counter is reset to zero. The 
learning rate is calculated such that it follows the basic I/t 
schedule used in [7] when only few data points have been 
observed, and it approaches the same recursive filter learn- 
ing in [8] after many points are seen. The counters 
effectively act as a separate clock for each Gaussian so that 
the appropriate learning rate can be used. At the cost of 
only one additional parameter per Gaussian, this modifica- 
tion dramatically improves the convergence while 
maintaining the same temporal adaptability after conver- 
gence. 

For simplicity, we base our notation on a 
one-dimensional signal. Extension to a higher dimension is 
straight-forward. Let each pixel position in the video be 
represented by a K-Gaussian mixture 

where gk is the k-th normal distribution in the mixture. The 
Gaussians are initialized to 0 weights with a large variance 
Vo. Upon observing x at time t + l ,  the best matching 
Gaussian is determined by max { pk(x)} ,  where 

Since the normal distribution has infinite extent, gk(x) is 
usually rounded to 0 if x is more than three standard devia- 
tions away. For efficiency, a winner-take-all system sets 
the best matching pk(x) to 1 ,  and all other pj's to 0 .  The 
parameters of Gk are updated using the following 

If none of the Gaussian matches x, as is the case at initial 
learning, then one of the component Gk is selected and as- 
signed to x by 

The selection criterion can be based on m i n { w k )  or, as 
suggested in the context of background modeling [8], 
m i n  { w k / a k } .  With the exception of the reassigned Gaus- 
sian, the weights are updated using 

The weights are renormalized to sum to 1 after updates. 
From the learning rate update equations above, it can be 

seen that in the initial learning stage of a Gaussian when 
only few samples have been observed, q k  = Ilck and learn- 
ing follows the basic llt schedule. Using the same 
example mentioned earlier where a constant x is observed, 
it takes only 55 iterations for a to converge to 1% of Vo 
when a=0.01, and 90 iterations when a=0.001, compared 
to 460 and 4600 iterations, respectively, with raw recursive 
learning. 

As more data samples are included in its parameter es- 
timation, T J ~  approaches a and behaves like the typical 
recursive learning. However, in contrast to the method of 
[4], there is no explicit separation of learning stages and 
the appropriate learning rate is applied at all stages, even 
through reassignment. Maintaining a separate counter for 
each Gaussian is not only necessary to account for reas- 
signment, it also improves convergence and approximation 
of smaller data clusters. 
We can qualitatively compare the proposed learning sched- 
ule to existing methods. The algorithm reported in [8] 
calculates the learning rate as qk = a . g k ( x ; p k , u k ) .  Be- 
cause gk(x) is usually very small, this makes convergence 
intolerably slow. This can be improved by simply using 
qk = a without much side effect, as is done in [2][3]. This 
is the recursive filter learning with fixed learning rate we 
analyzed earlier, and serves as the basis for our comparison 
in the next section. In the method proposed in [4], qk  = 
pk(x)IcL in the initial stage. After the first L samples, as- 
suming L=lla, the learning rule is equivalent to 

~ k ( t + 1 ) = ( 1 - a ) ' ~ k ( f ) + ' I k  ' x  

However, since I -a+qk can exceed 1 ,  the algorithm some- 
times displays a diverging behavior. 

4 Experimental Results 

The proposed algorithm was tested on synthetic as well 
as real video data and showed remarkable improvement 
over existing algorithms. We used 3-Gaussian mixtures 
with a=0.001, a typical setting for systems reported in lit- 
erature. In addition, Vo=l 000 and W F ~ .  We used m i n  { w k }  
as the selection criterion for Gaussian assignment. Input x 
is the pixel value in RGB or YUV space, ranges between 0 
and 255 in each dimension. A diagonal covariance matrix 
was used. 



We first tested the algorithms on several sets of synthetic 
data randomly generated from mixture distributions with 
known parameters. The results were very impressive. 
The proposed algorithm consistently out-performed the 
conventional fixed-rate recursive filter learning in both 
convergence speed and modeling accuracy through various 
parameter settings. Furthermore, since the convergence 
rate is almost independent of a, the performance of the 
proposed algorithm was almost unaffected by any reason- 
able choice of a. On the contrary, the conventional 
algorithm was very sensitive to the selection of a. Of 
course, the adaptability of both algorithms depends on a. 

The proposed mixture learning algorithm was used in a 
system for video background segmentation [5] and led to 
significant improvement over the algorithm reported in [8]. 
Input video is obtained from a fixed camera positioned on 
a table in a meeting room. Figure 1 illustrates a very 
typical case of the difference between the algorithms. The 
value of the red color component of a pixel in the video is 
plotted over time with "+". The large cluster of constant 
values near the top of the graph, which is the color of the 
meeting room wall, is the background. Occasional devia- 
tions happen when a person moves in front of it. The 
shaded (green) region shows three standard deviations of 
the most dominant Gaussian in the mixture. The result 
from the fixed rate recursive filter learning is shown at the 
top, and the proposed algorithm shown at the bottom. It is 
apparent that the conventional algorithm converged very 
slowly on the wall color, even erroneously included some 
points from the person. As a result, all other points outside 
the shaded region are grouped in a second Gaussian (not 
shown). In contrast, the proposed algorithm quickly con- 
verged on the wall data. Almost all the wall data points 
are tightly enclosed in the shaded region. In addition, the 
other points are picked up by two other Gaussians: one 
tight cluster near the value of 70, and one with a wide 
spread covering between 100 and 200. Because the clus- 
ters are well approximated, the wall is easily detected as 
background. 

The actual background segmentation results are shown 
in Figure 2. The person initially stood in front of the table 
(frame 0), moved about the room (frame 700), then 
grabbed the coffee mug and left the room near frame 1000 
(not shown). Both algorithms were initialized using frame 
0. Rows (a) and (b) show the background model and 
segmented foreground, respectively, obtained by the algo- 
rithm in [8]. It can be seen that remnants of the person 
from frame 0 was clearly visible at frame 700 and still 
vaguely visible even at frame 1500, leaving a ghost fore- 
ground region where the person stood initially. 
Similarly, the mug that was removed still left a ghost re- 
gion 500 frames later. This is a direct consequence of the 
slow convergence on distribution changes based on fixed 
rate recursive filter learning. Results obtained from our 
algorithm, shown in rows (c) and (d), are dramatically im- 
proved. With fast adaptation and accurate modeling of 
data distribution, the system was able to quickly adapt to 
changes in the scene and detect the new background. In 
frame 700, only a very faint trace of the person remains in 
the background model, and the ghost region was largely 
eliminated. In frame 1500, the system quickly adjusted to 
the disappearance of the mug and once again avoided false 
foreground detection. 

5 Conclusion 

In this paper we proposed an algorithm that dramaticallv ~, 
improves the convergence of online, adaptive mixture 
learning. This is achieved by incorporating a time-adaptive 
learning rate schedule developed for stationary distribution 
estimation into the recursive filter update equation for 
online mixture learning. Experimental results confirmed 
that this modification dramatically improves convergence 
and leads to better estimation. We showed that using the 
proposed algorithm in a video segmentation system based 
on the mixture model leads to a significantly better per- 
formance. 
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Figure 1 - A comparison of mixture learning algorithm in [8] (top) and the proposed algorithm (bottom). The 
value of the red color component (y-axis) of a pixel in video is plotted over time (x-axis) as "+". The shaded 
(green) region shows the estimated ( p  f 30) for one of the three Gaussians in the mixture. The weight (magni- 
fied) of the Gaussian is shown at the bottom of each plot in pink. 
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Figure 2 - A comparison of the proposed mixture learning algorithm used in video background segmentation. 
The top row shows frame 0,700 and 1500 in the video. The person grabbed the coffee mug and left the room near 
frame 1000 which is not shown. Rows (a) and (b) show the background model and the segmented foreground 
region obtained by the typical fixed rate algorithm. A shadow of the person is clearly visible after 700 frames, 
causing a ghost foreground region. Rows (c) and (d) show the results obtained by the proposed learning algo- 
rithm. The model quickly adapted the disappearance of person and coffee mug and eliminated ghost foreground 
regions. 




