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Abstract 

In this paper, we propose a novel method for synthesiz- 
ing super-resolved images from image sequence taken with 
uncalibrated moving camera by integrating all frames in the 
sequence based on projective geometry between the frames. 
In this method, assuming that the object scene can be ap- 
proximated with multiple plane patches, all frames in the 
input image sequence are registered with the fundamental 
matrices between the frames, and then integrated by trans- 
forming with homographic matrices. For reducing the reg- 
istration error, the blur mount in the integrated image is es- 
timated so that the sub-pixel order registration between the 
frames can be achieved. For demonstrating the effective- 
ness of the proposed method, we confirm that the proposed 
method improves the resolution of the synthesized image 
comparing with the input image sequence. 

1 Introduction 

In this paper, we propose a new method for synthe- 
sizing super-resolved image from sequential images taken 
with uncalibrated camera with unknown motion. In this 
method, we assume that the objective scene can be repre- 
sented by a number of planar patches. Then, each patches 
captured in all the input images are automatically registered 
and blended for synthesizing super-resolved image. In the 
proposed method, any camera parameter is not required in 
advance, but only fundamental matrices between the input 
images are required, which can be easily obtained by gen- 
eral feature-point traclung in image sequence [4]. 

As related works, Cheeseman et al.[l] proposed a 
method for super-resolution by blending sequential images 
with small displacement. They proposed a effective method 
for blending images based on Bayes' presumption, but they 
only assume that the object scene is a plane that is vertical 
to the camera direction. Irani et.al.[2] proposed a super- 
resolution based on affine camera model, but affine cam- 
era model requires limitations on the object scene. Mann 
et.al.[3] extended this method to perspective camera model, 
but the ohject scene must be a plane in this method. Our 
method can be regarded as an extended method of those 
studies, but the original contribution is proposing an effi- 
cient way to adapt a framework of the projective geometry 
to such super-resolution technique based on blending se- 
quential images. 

2 Proposed Method 

The outline of this method is shown in Figl. The input 
is a set of image sequence that is taken with uncalibrated 
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Figure 1: Outline of our method. 

motion camera. A super-resolved image is synthesized ac- 
cording to the following steps. 

Selection of base images and triangle patch Two im- 
ages are arbitrary chosen from the set of the images for 
defining projective 3D coordinate of the object space. The 
selected two images are called base images. In those base 
images, the object area is divided into some triangular 
patches, and then correspondence of the vertices between 
the base images are manually selected. Subsequent process 
is performed for every triangular patch defined here. 

Corresponding the triangular patch to all frames Po- 
sition of the vertices of the triangle patch in the base images 
are transferred into other images using fundamental matri- 
ces. In the proposed method, we assume that fundamen- 
tal matrices between two base images and other images are 
previously estimated by feature point tracking of the input 
image sequence. According to the point to epipolar line cor- 
respondence, the vertex point on the two base images can be 
transferred into other images as two epipolar lines as shown 
in Fig.2. The intersection of the lines is corresponding point 
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Figure 2: Calculating corresponding point 

Figure 3: Homography 

of the vertex point. In such a way. every vertex on every tri- 
angular patch on the base images can also transferred into 
all other images. 

Then the comspondences of three vertices of a patch 
between images also provides homography H, which trans- 
fers all the pixels inside the patch between the images as 
shown in Fig.3. The homography H can be estimated from 
the three correspondences and the fundamental matrix F 
between the images. 

Initial synthesis of super-resolved image Blending im- 
ages on all triangular patches, higher resolution than the in- 
put images can be obtained, because the sampling position 
of pixel in each triangular patch is shifted in sub-pixel dis- 
placement. Such displacement enables to synthesize super- 
resolved image. We assume that each triangular patch can 
he approximated to be planer surface. According to this 
assumption, every triangle patch image can be transferred 
onto the same image plane by using the homography be- 
tween the different view images. Such blending of all trian- 
gular patch images onto a same image plane, initial estima- 
tion of super-resolved image can be synthesized. 

Optimization of the registration Even though the cor- 
respondence of the vertices between base images are de- 
tected manually, positioning error up to one pixel unit can 
not be avoided. Accordingly, the corresponding points to 
other images are not accurate. Such error in the com- 
spondence makes the super-resolved image of initial syn- 
thesis degraded. For obtaining corresponding accuracy in 
sub-pixel order, we employ iterative optimization of the 
correspondence by evaluating quality of synthesized super- 
resolved image. In this optimization, the positions of the 

Figure 4: Optimization 

corresponding vertices between two base images are re- 
garded as objective variables. Then, the number of vari- 
ables is 12, that is 3 vertices x 2 base images x (x, y) 2 
variables. The 12-dimension vector that gives maximum 
quality is found by employing simplex method as optimiz- 
ing algorithm. 

Since the correspondence of the vertices points between 
the base images are transferred into other images by using 
epipolar geometry, the number of registered parameters is 
always 12 for each mangle patch, even if the number of 
sequential images is increased. 

For the optimization, we need to evaluate the quality 
of the super-resolved image. In this paper, we use high- 
frequency energy of the super-resolved image. If the reg- 
istration is not perfect, even same features in different im- 
ages are blended at different position in the super-resolved 
image. Such blending of the features with a lag affects as 
blur in the super-resolved image. We assume that the blur 
can be measured by the amount of the high-fquency en- 
ergy in the super-resolved image. For measuring the high 
frequency, we define the high-pass filter expressed as the 
following equation. 

This filter is applied to the super-resolved image Id(x, y),  
and then the filtered image I,(x, y) provides the evaluation 
value S(P)  for a triangular patch p. 

where a(z, y) is a spatial representation of A(u, v ) .  

3 Experiments Results 

We took image sequences by moving a camera by a hand. 
The captured sequential images are 160 x 120 pixels of color 
24bit intensity resolution. The number of images is 200. 
By blending all sequential images, we extend the resolution 
into 640 x 480 pixels. Examples of the input images are 
shown in Fig.5 and Fig.6. 

Fig.7 and Fig.9 show the comparison of the synthesized 
super-resolved image with an image in the input sequence. 
Fig.8 and Fig. 10 show zooming up of the images, where 
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Figurc 5: Original iniagc scqucncc (1) 
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Figurc 6: Original iniagc scqucncc (2) 
Figurc 8: Supcr rcsolvcd imagcs synthcsizcd from rcal im- 
age scqucncc ( I )  (zoom) 

(a) shows an input imagc. (b) shows thc hi-lincar intcrpo- 
latcd iniagc of ihc lnpG Iniagc, and (c) shows thc supcr- 
rcsolvcd rniagc synthcsl~cd by thc proposcd n~cthod. Thc 
Icttcrs, wh~ch arc not rcadablc in thc input iniagcs (a) and 
(b), bcconic rcadablc in thc supcr-rcsolvcd iniagcs (c). Thc 
supcr-resolution can bc cfl'cct~vcly achicvcd cvcn for thc 
sccnc with largc dcpth varlancc as Fig.9, slncc thc proposcd 
method does not assume the orthographic or affine camera 
modcl, but pcrlhrms supcr-resolution undcr thc pcrspcctivc 
camcra modcl via cpipolar gcomctry among thc imagcs. 

In addition to thc cxpcrinicnt with thc actual canicra 
dcmonstratcd abovc, wc pcrform an supcr-resolution cxpcr- 
imcnt fioni input iniagcs that arc virtually synthcsizcd in thc 
coniputcr for cvaluating thc pcrfomiancc of thc proposcd 
nicthod. First, we prcparc a digital iniagc with scvcral tinics 
highcr rcsolution than thc input canicra imagcs by using an 
imagc scanncr. Thcn, wc virtually synthcsizcd 200 input 
imagcs with 160 x 120 pixcls undcr various camcra parani- 
ctcrs as shown in Fig. I I. Fig. I2 shows cxamplc imagcs of 
thc synthcsizcd imagc scqucncc. From thc input imagcs, we 
gcncratc a supcr-rcsolvcd irnagc with thrcc timcs rcsolution 
of 4 0  x 360 pixcls, and thcn cvaluatc thc pcrfomiancc of' 
thc proposcd mcthod as lbllows. 

Performance of optimization Fig. I3 and Fig. I4 show 
thc cstimatcd vcrticcs position ofa  trianglc patch. In Fig. 13, 
which is bcforc thc optimization, thc vcrticcs positions in 
(c) and (d) arc dill'crcnt Li-on1 thc basc iniagcs (a) and (b), 
bccausc thc initial cstiniatc of thc transfcrrcd trianglc is af- 
fcctcd by thc crror of thc fundamental matrices. Af'tcr thc 
optimization, which is shown in Fig. 14, thc vcrticcs posi- 
tions in all iniagcs arc almost same bccausc of thc cffcct to 
optimization for thc rcgistration. 

( a )  Original Itnagc ( b )  Super-rcholvcrl irnagc 

Figurc 9: Supcr rcsolvcd iniagcs synthcsizcd from rcal im- 
age scqucncc (2) 

Fig. 15 shows thc comparison of thc supcr-rcsolvcd im- 
ages bcforc optimization and aftcr optimization. Thc blur 
causcd by thc rcgistration crror can bc rcduccd by thc opti- 
mization. 

Quality of the super-resolved image Wc cvaluatc thc 
quality of thc super-rcsolvcd imagc by calculating SNR 
with virtually synthcsizcd imagc with thc samc rcsolution 
of thc super-rcsolvcd iniagc undcr thc schcnic shown in 
Fig. 11 .  SNR of thc supcr-rcsolvcd imagc shown in Fig. 15 
(b) is 2 1.6dB. whilc SNR of thc intcrpolatcd iniagc with 
bi-lincar nicthod is 20. I dB. Such iniprovcmcnt in SNR dc- 
pcnds on the nunibcr of input imagcs to gcncratc thc supcr- 
rcsolvc iniagc. Tablc 1 shows SNR of thc supcr-rcsolvcd 
imagcs gcncratcd from various numbcr of input irnagcs. 
Those rcsults dcmonstratc that thc proposcd mcthod is valid 
to iniprovc thc quality ofthc input imagc. 

4 Conclusion 

Wc proposcd a nicthod of synthesizing supcr-rcsolvcd 
iniagc froni scqucntial imagcs that arc captured by moving 

Tablc 1 : SNR(dB) of supcr-rcsolvcd iniagc and thc nunibcr 
of input franics. 

Figurc 7: Supcr rcsolvcd imagcs synthcsizcd froni rcal ini- numbcr of imagcs 11 10 25 100 200 
agc scqucncc ( I) SNR (dB) 11 20.7 21.3 21.5 21.5 
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Figurc 10: Supcr rcsolvcd iniagcs synthcsizcd froni rcal ini- 
agc scqucncc (2) (zooms) 
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Figurc 13: Rcsult of calculating corrcsponding point (bc- 
forc optimization) 

Figurc I I: Synthesis of virtual niotion camcra imagc 

canicra with handy niotion. Thc cxpcrinicnt rcsults dcnion- 
stratc that thc proposcd nicthod is cn'cctivc for obtaining 
highcr rcsolution iniagcs than input imagcs. 
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Figurc 14: Rcsult of calculating corrcsponding point (aftcr 
optimization) 
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timization and aftcr optimization 

Figurc 12: Synthcsizcd Image Scqucncc 




