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Abstract 

We propose an improved local appearance and color 
modeling method, as an extension of Moghaddam & 
Zhou [lo], for object detection and recognition in clut- 
tered scenes. The approach is based on the joint distri- 
bution of local feature vectors at  multiple salient points 
and factorization with Independent Component Anal- 
ysis (ICA). We we are able to obtain a tractable set 
of joint probability densities which can model high- 
order dependencies in local image features. In this 
work we replace multi-dimensional histograms with 
Gaussian mixture models with model-order selection 
based on the Minimum Description Length (MDL) cri- 
terion. Furthermore, a hybrid color/appearance mod- 
eling scheme is introduced which significantly increases 
performance. 

1 Introduction 

For appearance based object modeling in images, 
the choice of method is usually a trade-off determined 
by the nature of the application or the availability of 
computational resources. Existing object representa- 
tion schemes provide models either for global features 
[15], or for local features and their spatial relationships 
[12,1,14,5]. With increased complexity, the latter pro- 
vides higher modeling power and accuracy. Among var- 
ious local appearance and structure models, there are 
those that assume rigidity of appearance and viewing 
angle, thus adopting more explicit models [14, 12, 91; 
while others employ stochastic models and use proba- 
bilistic distance and matching metrics [5, 8, 11. 

Recognition and detection of objects is achieved by 
the extraction of low level feature information in order 
t o  obtain accurate representations of objects. In order 
to obtain a good description of objects, extracted low 
level features must be carefully selected and it is often 
necessary to use as many salient features as possible. 
But one of the most common problems in computer 
vision is the computational cost of dealing with high 
dimensional data as well as the intractability of joint 
distributions of multiple features. 

We propose a novel local appearance and color mod- 
eling method, an extension of Moghaddam & Zhou [lo], 
for object detection and recognition in cluttered scenes. 
The approach is based on the joint distribution of local 
feature vectors a t  multiple salient points and factor- 
ization with Independent Component Analysis (ICA). 
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Taking this new statistically independent space to cre- 
ate k = 3 tuples (k = 3 salient points) of the most 
salient points of an object, we are able to obtain a set of 
joint probability densities which can model high-order 
dependencies. 

In this paper, we focus exclusively on objectlimage 
modeling with Gaussian mixture models (as opposed to 
histograms) which are optimally tuned using the Min- 
imum Description Length (MDL) criterion to address 
the model-order selection problem. A detailed descrip- 
tion of our model is given in Section 2. Experimental 
results with a subset of the COIL-100 database and 
real cluttered scenes are described in Section 3. 

2 Methodology 

We propose to use an adaptative Gaussian mixture 
model as a parametric approximation of the joint distri- 
bution of image features of local color and appearance 
information a t  multiple salient points. 

Let i be the index for elementary feature compo- 
nents in an image, which can be pixels, cornerlinterest 
points [3, 41, blocks, or regions in an image. Let xi de- 
note the feature vector of dimension n at location i. xi 
can be a .  simple as {R,G,B) components at  each pixel 
location, some invariant feature vectors extracted a t  
corner or interest points [7, 12, 131, transform domain 
coefficients a t  an image block, and/or any other local/ 
regional feature vectors. 

For model-based object recognition, we use the a 
posteriori probability 

where Ml is the object model and T = {xi) represents 
the features found in the test image. Equivalently, by 
assuming equal priors, classification/detection will be 
based on maximum likelihood testing: 

For the class-conditional density in equation (2), it is 
intractable t o  model dependencies among all xi's (even 
if correspondence is solved), yet to completely ignore 
these dependencies is to severely limit the modeling 
power of the probability densities. Objects frequently 
distinguish themselves not by individual regions (or 
parts), but by the relative location and comparative 
appearance of these regions. A tractable compromise 
between these two modeling extremes (which does not 
require correspondence) is to model the joint density 
of all k-tuples of xi's in T. Figure (1) shows a general 
scheme of our methodology. 



Figure 1: Graphical representation of a k-tuple density 
factorization using ICA [lo]. 

2.1 Joint distribution of Ic-tuples 

Instead of modeling the total joint likelihood of all 
XI ,  xz, . . . XI, which is an (I x n)-dimensional distri- 
bution, we model the alternative distribution of all k- 
tuples as an approximation: 

This becomes a (k x n)-dimensional distribution, which 
is still intractable (Note: k < n and k << I). As in our 
previous work [lo], using multi-dimensional histograms 
as an approximation of the joint distribution of image 
features with 20 histogram bins along each dimension, 
would require 2 0 ( ~  n, bins. Therefore, a factorization 
of this distribution into a product of low-dimensional 
distributions is required. We achieve this factorization 
by transforming x into a new feature vector S whose 
components are (mostly) independent. This is where 
Independent Component Analysis (ICA) comes in. 

2.2 Data factorization based on ICA 

ICA originated in the context of blind source sep- 
aration [2, 61 to separate "independent causes" of a 
complex signal or mixture. It is usually implemented 
by pushing the vector components away from Gaus- 
sianity by minimizing high-order statistics such as the 
4 t h  order cross-cumulants. ICA is in general not per- 
fect therefore the IC's obtained are not guaranteed to 
be completely independent. 

By applying ICA to  {xi), we obtain the linear map- 
ping 

x = AS (4) 

and 

where A is a n-by-m matrix and Si is the "source 
signal" a t  location i with nearly independent compo- 
nents (Note: m < n). The original high-dimensional 
distribution is now factorized into a product of m k- 
dimensional distributions, with only small distortions 
expected. We note that this differs from so-called 
"naive Bayes" where the distribution of feature vectors 
is assumed to be factorizable into 1-D distributions for 
each com~onent.  Without ICA the model suffers since 
in general these components are almost certainly sta- 
tistically dependent. 

After factorization, each of the k dimensional fac- 
tored distributions becomes manageable if k is small, 

e.g., k = 2 or 3. Moreover, matching can now be per- 
formed individually on these low-dimensional distribu- 
tions and the scores are additively combined to  form 
an overall score. 

3 Experimental results 

This paper is an extension of the previous work of 
[lo] where multi-dimensional histograms of joint distri- 
butions of image features have been replaced by adap- 
tative Gaussian mixture models, t.uples have been ex- 
tended from k = 2 to k = 3 points and we have added 
local color information to  our model, all of which have 
resulted in great improvement with respect to previous 
results. As we will see, this new model representation 
is more suited for "cluttered" imagery where complex 
objects need to be modeled. 

For our experiments, we used a Harris operator 
[4, 131 to detect interest points and extracted the first 
9 differential invariant jets [7] a t  each point as the cor- 
responding feature vector x. Our previous study [lo] 
analyzed k = 2 tuples by using joint 2D histograms as a 
non-parametric approximation of the joint distribution 
of image features a t  multiple image locations. Now, an 
extension of this study has considered k = 3 tuples us- 
ing 3D histograms and results demonstrate that this 
framework is quite powerful. Using the first 20 objects 
of COIL100 [ll] as a reduced database of objects in or- 
der to  analyze our technique, we have compared results 
using multi-dimensional histograms as described in [lo] 
with k = 2 and k = 3 tuples. Results are presented in 
table (1). 

Table 1: No. of correct matches (out of 20) and resulting 
recognition rates when considering the original 9D invariant 
jets ?appearance model) assuming independence and 3 0  
ICA transformed vectors that are really independent. First . - ---. 

instance was used as training, and 4-new instances were 
used to test. 

This first experiment depicted in table (1) shows 
that when we only use an apperance model based on 
the original n = 9 dimensional vectors, recognition 
rates are lower than considering a m = 3 indepen- 
dent feature space obtained using ICA. In our previ- 
ous study [lo], the m = 3 dimensional independent 
space obtained using ICA was the optimal space in 
terms of recognition rates. But it is interesting to note 
that as k is increased (more points per tuple are con- 
sidered), recognition rates are decreased when using 
multi-dimensional histograms. we note that we have 
used 32 bins per dimension, so that, when using k = 3 
tuples, we are using a total 323 = 32768 bins. As 
pointed out in our previous study [lo], quite a few in- 
ternal parameters of histograms must be fine-tuned in 
order to  obtain a reliable representation, but it seems 
that when this space gets huge (as when working with 
k = 3 tuples), this representation is not appropriate. 

A sample data distribution projected in our m = 3 
dimensional ICA space is shown in figure (2) where we 
can appreciate that our tuple space is highly complex. 
This figure (2) shows the k = 2 tuple case but when 



k = 3 tuples are considered, data distributions are 
more localized and complex. Using multi-dimensional 
histograms to represent this space would mean that we 
must have a very high precision in order to capture 
specific behaviours. Another drawback of using multi- 
dimensional histograms is that each model would need 
a lot of resources to be saved in disk. 

Gaussian mixture models are a reliable alternative 
to represent this space for two specific reasons: sim- 
plicity and adaptability. Using a mixture of Gaus- 
sians would mean that local concentrations will be cap- 
tured by each Gaussian, thus resulting in an adaptative 
model with fewer parameters. The typical problem of 
using a mixture of Gaussians as a model is the choice 
of the number of components to be used to represent 
data (also known as "model-order selection"). In our 
particular case, we used and adaptative mixture model 
[9] based on the Minimum Description Length (MDL) 
[16] optimality criterion to fit our data. 

- 

(a) Dimension 1 (b) Dimension 2 

(c) Dimension 3. 

Figure 2: Three 2 dimensional spaces representing one of 
the objects in the database. 

As an illustration of mixtures of Gaussians using dif- 
ferent number of components, we show table (2) where 
recognition rates using 5 and 10 Gaussians per model 
are used. Now, we can appreciate that depending on 
the number of Gaussians, results may vary. But it is 
important to note that the expected behaviour of in- 
crementing the number of points per tuple (k) with 
an increasing of the recognition rate is reflected in this 
results (with the multi-dimensional histograms we did 
not have this behaviour). Using a correct estimation of 
the number of components through the Minimum De- 
scription Length (MDL) criterion, we are able to obtain 
better recognition results as shown in table (3). 

Table 2: Recognition rates when considering a mixture of 
Gaussians in a m = 3 dimensional ICA space. We present 
a mixture of Gaussians using 5 and 10 Gaussians. 

Table 3: Recognition rates when the number of Gaussians 
is estimated using the Minimum Description Length (MDL) 
criterion. 

Since these low recognition rates are not very sat- 
isfactory, we introduced a hybrid appearance/color 
model by introducing the mean color of each normal- 
ized channel (red, green and blue channels) obtained 
from a circular region defined around each interesting 
point. Local color histograms can also be considered 
as reliable local color information but since our ap- 
pearance local descriptors are defined by 9 dimensional 
vectors, we only have introduced a 3 dimensional color 
descriptor. 

But the addition of color introduces essentially one 
degree of freedom (information) to the model and we 
would expect that m = 4 dimensional ICA spaces 
would suffice (indeed m = 3 results in poor perfor- 
mance). Recognition results considering a projected 
space of 4 and 5 dimensions are shown in table (4). 
We note that going to higher dimensions (m = 5) re- 
duces performance due to the fact that the ICA fac- 
torization and modeling in higher dimensions is more 
difficult (esp. if the data has a lower intrinsic dimen- 
sionality of m = 4). 

In conclusions, we found that the hybrid appear- 
ance/color model provides the best classification re- 
sults when the statistically independent space obtained 
by ICA is defined using 4 dimensions. In this particu- 
lar case, we found that using MDL adaptive mixtures 
did not improve the (already high) recognition perfor- 
mance in Table - ie. 15 components sufficed in cap- 
turing the distributions). With larger databases, this 
is not necessarily true and the use of MDL estimation 
is critically important. 

Table 4: Recognition rates when 4 and 5 dimensional fea- 
ture spaces are used to build our appearance and color 
model. As it was initially expected, using a 4 dimensional 
feature space we are able to obtain the best recognition 
results. 

For an illustration of our current object classification 
framework, some visual results are presented in figure 
(3) where different likelihood maps of our joint density 
functions are shown when the particular object model 
of figure (3.a) is used for object detection. 

We also tested our new approach under real and 
cluttered scenes where objects can be affected by dif- 
ferent natural factors. This is the case presented in 
figure (4) which shows the modeling and subsequent 
detection of the US Pentagon building before and af- 
ter the September 11 terrorist bombing. Figure (4.a) 
presents a real image of a pentagon building and figure 
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Figure 3: (c), (d) and (e) are the likelihood maps obtained 
from image (b) when the object presented in (a) is used for 
object detection using different models. 

(4.b) shows the extracted building used for our learn- 
ing and modeling. Figure (4.c) depicts a test image 
which was taken after the bombing debris was cleared 
away by the cleanup crew (leaving a whole section of 
the building missing). This test image was also taken 
a t  a different time of day and under different weather 
conditions. Figure (4.d) shows the graphical likelihood 
map thresholded and multiplied by the original test 
image in order visualize the detected region (where the 
model likelihood is very high). We can see that our im- 
proved local appearance models (which are quite gen- 
eral in formulation) were found to be satisfactory for 
satellitelaerial imagery. 
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