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Abstract 

We have proposed a decomposition of the eigen- 
face into two orthogonal eigenspaces and have shown 
that the decomposition is effective for realizing robust 
face recognition under various lighting conditions [lo]. 
The present paper refines the decomposed eigenface 
method by introducing a projection-based image cor- 
rection. The  image correction technique is principally 
authorized when the object shape is fixed and a suf- 
ficient number of images are taken beforehand. How- 
ever, the proposed technique can also be applied to  a 
canonical eigenspace, which is constructed from several 
faces taken under various lighting conditions. Reflec- 
tive noises, shadows and occlusions are detected and 
corrected by the projection of a facial image onto the 
canonical eigenface. Based on the newly proposed im- 
age correction, we develop herein a refined decomposed 
eigenface method. The experimental results indicate 
that the refinement works well for face recognition un- 
der various lighting conditions, as compared to  the 
original decomposed eigenface method. 

1 Introduction 

Appearance-based face recognition can be resolved 
to  the eigenface method[6], which is often identical to  
the subspace method[5, 21, if several facial images can 
be collected in the registration stage. The eigenface, 
however. cannot be stablv com~osedwhen  too few sam- 
ple images are available or whe; the lighting conditions 
are highly similar over the sample images. In order to  
solve t,his problem, Shakunaga and Yamamoto[9] pro- 
posed the concept of virtual subspace, and Shakunaga 
and Shigenari[lO] refined this concept to  obtain the de- 
composed eigenface method. The decomposed eigen- 
face method facilitates face recognition under various 
lighting conditions t o  cover cases in which too few im- 
ages are available for registration. 

The  present paper improves the original decomposed 
eigenface method[lO] by introducing a projection-based 
image correction. 

section 2 summarizes the decomposed eigenface 
method[lO]. After briefly introducing the terminology 
in 2.1-2.3, registration and recognition schemes are de- 
scribed in 2.5. Refinement of the decomposed eigenface 
method is described in Section 3. Projection-based 
image correction is introduced in 3.1 using a canoni- 
cal eigenspace (CS) which is constructed using several 
facial images taken under various lighting conditions. 
Examples of the image correction are also shown in 3.1. 
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The image correction enables the refinement of the CS 
and two schemes for registration and recognition, as 
summarized in 3.2 and 3.3. 

Section 4 compares an experimentally obtained re- 
sult t o  the result given by the original method for a 
database of facial images of 50 persons under 24 differ- 
ent lighting conditions. 

2 Decomposed Eigenface Method 
2.1 Normalized Image Space 

Let an N-dimensional vector X denote an image, 
and let 1 denote an N-dimensional vector in which any 
element is equal to 1. The normalized ima e x of an 8 original image X is defined as x = X / ( X  1). After 
the normalization, x is normalized in the sense that 
x T 1  = 1. Any nonzero image X(#  0) can be mapped 
to  a point in the Normalized Image Space (NIS). 

2.2 Canonical Space 

In the present paper, a facial space is defined as a 
space composed from a set of frontal faces obtained 
from several persons under various lighting conditions. 
In order to  simplify the problem, we assume that  a 
good segmentation is readily accomplished for each 
normalized image, as shown in Fig. 4. Eigenspace anal- 
ysis on the face space decreases the dimension of the 
face space with little loss of representability [2, 61. In 
our experiments, a 45d eigenspace, called the canonical 
space (CS), is constructed from a canonical image set 
which consists of facial images of 50 persons under 24 
lighting conditions. 

Let x and C denote the mean image and the covari- 
ance matrix on the canonical set, respectively. Let A 
denote a diagonal matrix of which the diagonal terms 
are eigenvalues of C in descending order, and let cP de- 
note a matrix of which the i-th column is the i-th eigen- 
vector of C. Then, PCA implies A = cPTC@. Using a 
submatrix an of a ,  which consists of the n largest- 
eigenvalue eigenvectors, a projection of x to  the n- 
dimensional CS and the residual are respectively given 
as 

X* = a n T ( x  - X) 
and 

x#  = x - x - a n x * .  

Thus, a normalized image x can be decomposed into 
the canonical component x* and the residual compo- 
nent x # ,  which are orthogonal by definition. 

2.3 Eigen-projection and Eigen-residual 

The  orthogonal components x* and x#  enable us to  
decompose the eigenface (EF) in NIS. That  is, as shown 



Figure 1: Decomposition of the E F  to  the E P  and the 
ER.. 

in Fig. 1, two eigenspaces can be constructed indepen- 
dently in CS and in the orthogonal complement CS'. 
The first eigenspace, called an eigen-projection (EP),  
is constructed from the canonical components in CS. 
The second eigenspace, called an eigen-residual (ER), 
is constructed from the residual components in CS'. 
The E P  and the ER are constructed by the eigenspace 
analysis in CS and CS'. 

For the E P  construction, the mean vector and 
the covariance matrix C; are calculated as 

and 

We can estimate the lighting condition under which 
each input image is taken. In our current implemen- 
tation, a nearest-neighbor discrimination is performed 
for 24 lighting conditions. 
(2) Lighting transformation in CS 
We can prepare a linear transformation in CS which 
approximately transforms a facial image taken under 
one lighting condition t o  a facial image taken under 
another condition. The transformation is constructed 
from a canonical image set which is used for CS con- 
struction. Using the lighting transformation, a set of 
images is constructed. 

A VEP can be constructed in the CS from the syn- 
thesized image set, even if only one image is registered 
for each person. When additional images are regis- 
tered, the VEP is updated by nearest-neighbor selec- 
tion of the virtual images. 

2.5 Registration and Recognition Schemes 

In the registration stage, an input facial image x 
is decomposed to  x* and x# .  Then, the E P  and the 
E R  are created independently in CS and in CS', re- 

is con- spectively. The Virtual Eigen-projection (VEP) ' 
structed as described in 2.4. 

In the recognition stage, we can realize the face iden- 
tification by combining the two eigenspaces. Given an 
unknown face x, two similarity measures are defined by 
normalized correlations in CS and C S ~ ,  where C(x ,  y )  
shows a normalized correlation of x and y :  
(1) Similarity between x* and (V)EP in CS: 

Cl, (x)  = c(a;,ji; + xrf, x*). 

Let 8; and A; denote the eigenvecton and the diag- (2) between x# and ER @$ in  CS': 

onal matrix, respectively. Then, PCA implies A; = 
- 

C2,(x) = c(ap#,jig + xf , X#). 
@;T~;@*. Using a submatrix a* of a;, which con- 
sists of tRe first m eigenvectors, tLZ projection of x* to  (3) Combined similarity of C1 and C2: 
the p t h  E P  is given by Because C 1  and C 2  are calculated independently in 

CS and CS'. thev can be combined as shown below 

The ER can also be constructed in the m a m e r  de- 
scribed for the EP. In addition, we can define xf , c?, 
@$, A$, and 8% in the same manner. Consequently, 
the projection of x#  to  the p t h  ER is given by 

2.4 Virtual Eigen-projection 

Virtual eigenspace is defined as a virtualized con- 
cept of eigenspace [lo]. When a t  least one image is 
registered for a person, a virtual eigenspace can be di- 
rectly constructed over a set of virtual images that  are 
synthesized by lighting estimation followed by lighting 
transformation. Virtual eigenspace converges t o  the 
real eigenspace when additional images are taken. 

We can also synthesize a set of images in CS from 
a single projection. Therefore, an eigenspace can be 
constructed in CS by PCA. Let us call the virtual 
eigenspace a virtual eigen-projection (VEP). The im- 
age synthesis is based on the following lighting estima- 
tion and lighting transformation: 
(1) Lighting estimation in CS 

a " 
Cl (x) C2,(x) 

C3,(x) = A +7 
Clp? (x) C 2c2 (x) l 

where gi = arg m a x 1 5 ~ 5 q  Ci,(x). 
A simple discrimination rule is then created for 

C i ( i  = 1 ,2 ,3 ) ,  by selecting a person 
arg max Cip(x).  

l l p 5 P  

3 Refinement of Decomposed Eigen- 
face Method 

3.1 Projection-based Image Correction 

As discussed in 2.2, a projection of an image x to  
CS is given as x* = a n T ( x  - F). The residual x#  is 
then expressed as x #  = x - f - @,x*. 

In this section, we refine the original decomposed 
eigenface method by image correction prior to  the de- 
composition. For this purpose, let us define the relative 
residual ri for the i-th pixel of x as 

where ei is a unit vector of which only the i-th element 
is 1 and the other elements are 0. 



Then, a pixel-wise correction is defined as follows. 
When lri 1 2 re for a threshold re, the i-th pixel of x 
is replaced by e T ( i  + @,x*). The image correction 
makes an intensity value to  be consistent with the pro- 
jection. For example, regions obscured by shadows and 
reflections from eyeglasses are removed by the image 
correction. 

The image correction does not satisfy the normality 
of the image. Therefore, the corrected image should be 
re-normalized when all of the pixels are checked and 
corrected. 

The projection-based correction changes outliers to  
inliers. When more than a few ~ i x e l s  are corrected. x* 
also changes to some extent. ~hkre fore ,  a few iterations 
of the image correction should be performed in order to  
obtain better noise suppression. After a few iterations, 
x converges to  an image containing little noise and few 
shadows. 

Figure 2 shows an example of image correction. The 
original image in the top row is gradually corrected in 
both the projection and residual domains. In particu- 
lar, reflections from the person's glasses are suppressed. 

First %"""$ 
Correction "4 3 &i W:g3 

Second 
Correction 

Final Result 

Figure 2: Example of iterative image correction. 

3.2 Refinement of Canonical Space 

Because the image correction can also be applied 
to  any image in the canonical image set, CS is recon- 
structed from the corrected image set. 

Figure 3 shows the most significant five eigenfaces 
of CS before and after image correction. The image 
correction refines the canonical spaces because several 
reflections and shadows are removed from the canonical 
image set. After reconstruction of the canonical space, 
lighting transformation matrices are also reestimated 
for the construction of the VEP[lO]. 

Because both the CS and the registered image are cor- 
rected, each VEP includes much less noise than the 
original method. No further noise reduction is neces- 
sary for the construction of the ER because the image 
correction repairs the ER. 

In the recognition scheme, the subspace method is 
applied to  an image after the image correction. Be- 
cause the VEP and the ER include less noise, the pro- 
posed recognition scheme works better than the origi- 
nal method. 

4 Experimental result 
4.1 Data Specifications 

The data specifications are summarized in Table 1. 
Facial images were taken using a fixed camera in our 
laboratory. Each of the 100 persons looked forward 
while sitting in a chair located a fixed distance from the 
camera. The location of the chair was fixed in order t o  
obtain the frontal facial images of each person. 

Table 1 : Data s~ecifications - 

11 Canonical set I Test images 
AL of ~ e r s o n s  11 50 I 50 

As shown in 2.2, CS is created from the canonical 
image set, which consists of 1200 images of 50 per- 
sons. For each person, images were taken under 24 
lighting conditions, which were controlled by changing 
the position of the light. In the canonical set, nine 
persons wore glasses. Figure 4 shows the averages of 
the canonical images taken under the 24 lighting condi- 
tions. The remaining 50 persons were used for the test 
data,  in which 15 persons wore glasses. Figures 5 (a) 
and (b) show seven examples of canonical images and 
seven example test images, respectively, taken under 
fixed lighting conditions. 

# of lighting 
conditions 
Image size 

# of persons 
wearine elasses 

Figure 3: Comparison of average face and the most sig- 
nificant five bases: Upper and lower rows show images Figure 4: Averages of canonical images under 24 light- 
before and after image correction, respectively. ing conditions. 

3.3 Refined Registration/Recognit ion 
Schemes 4.2 Comparison 

24 

32 x 32 

9 

In the registration scheme, the VEP is constructed For personal registration, It' images were randomly 
in the manner described in 2.5 after image correction. sampled from 24 images of each person in the test 

24 

32 x 32 

15 



Table 3: Results for two databases [%I 

Figure 5: Examples of canonical/test image sets. 

data.  Therefore. the discrimination ex~er iment  was 
performed using the remaining 24 - Ii' iAages of each 
registered person. This process was repeated one- 
hundred times while registered images for each person 
were varied 

Table 2 shows the average discrimination rates. Six 
methods were compared using the same canonical set 
and test set. ~ h ;  first three rows show the results 
of the original method, and t,he remaining three rows 
show the results of the refined method. In all of the 
methods, face symmetry was used in the registration 
stage. The dimension of the E P  is li + 3, whereas the 
dimension of the ER is min(2Ii - 1, Ii' + 2). 

The table shows that the discrimination rates are 
improved by the image correction for all Ii' and for 
all similarity measures. The best result is provided by 
C3,  with recognition reaching 95.1% when only one 
image is registered for each person. This represents an 
improvement of three points over the original method. 
When five images are registered for each person, the 
result obtained using C 3  reaches 99.9%. 

Table 2: Discrimination rat,es for 50 persons [%] 

4.3 Recognition on AR database 

Method 
C l  (original) 
C 2  (original) 
C 3  (original) 
Cl(r r f ined)  
C2(rcfincd) 
C 3  (refined) 

L ,  

Met.hod C 3  (original) 11 C3 (refined) 
Database I ]  P K = l  I 

Ours 1 1  50 92.1 1 97.3 

Number of samples(K)/person 
1 1 2 1 3 1 4 1 5  

AR databases. The refined method can be applied to  
a face recognition under natural lighting conditions, 
even if the lighting condition is unknown or changes 
with time. The image correction method can also be 
applied to  a wide range of applications, including face 
and object recognition. 

81.2 
89.0 
2 . 1  
83.1 
1 .  
95.1 
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