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Abstract --- 
Visual object detection using single cue information 

has been successfully applied in various tasks, in par- 
ticular for near range recognition. While robust clas- 
sification and probabilistic representation enhance 2D 
pattern recognition performance, they are 'per se' re- 
stricted due to the limited information content of single 
cues. The contribution of this work is to demonstrate 
performance improvement using multi-cue information 
integrated within a probabilistic framework. 2D and 
3D visual information naturally complement one an- 
other, each information source providing evidence for 
the occurrence of the object of interest. We demon- 
strate preliminary work describing Bayesian decision 
fusion for object detection and illustrate the method 
by robust detection of traffic infrastructure. 

1 Introduction 

Introduction. Object recognition and detection 
based on visual information has been successfully ap- 
plied in various tasks [9,8,26,25], in particular for near 
range recognition [25, 12, 10, 20, 181. Specific tasks 
impose additional challenges on the robustness of a de- 
tection system, such as outdoor imaging (e.g., illumina- 
tion variations) or automatic object detection from pre- 
processed regions of interest (ROIs) in real-world im- 
ages. To overcome these problems, robust recognition 
[lo], illumination tolerant classification [2] and prob- 
abilistic detection 112, 20, 181 have been introduced 
to enhance the pe;formance of 2D pattern recogni- 
tion methods. However, performance gains from these 
methods remain restricted as long as they rely on the 
limited information content of single information cues. 

The original contribution of this work is to demon- 
strate that the integration of multi-cue visual infonna- 
tion improves detection performance within a proba- 
bilistic framework. The essential role of information 
fusion in image understanding [23] and pattern recog- 
nition has already been sufficiently outlined. Though, 
most work on fusion focuses either on the integration 
of multi-source data [6] or on the dynamic accumu- 
lation of evidence from single-cue information [3, 191. 
The utility of multi-cue evidence has been stressed for 
tracking issues [5] and visual servoing tasks [24]. The 
presented work outlines integration within the mathe- 
matical framework of Bayesian decision fusion and with 
respect to the context of visual object detection. De- 
tection is here triggered by the fusion of 2D and 3D 
information which naturally complement one another, 

Figure 1: Concept of the object detection system using 
multi-cue information fusion. 

each information source providing evidence for the oc- 
currence of the object of interest. 

Multi-cue object detection is evaluated within ex- 
periments of a characteristic Mobile Mapping appli- 
cation. Mobile Mapping of environment information 
from a moving platform plays an important role in the 
automatic acquisition of GIs (Geographic Information 
Systems). The extraction of traffic infrastructure from 
video frames captured on a moving vehicle requires 
a robust visual object detection system that provides 
both high localization accuracy and the capability to 
cope with uncertain information [la]. The efficient ex- 
traction of vertical object 3D structure [14] and the 
robust detection of traffic signs using 2D appearance 
based object recognition [17] are now combined to give 
an improved estimate on the object identity and loca- 
tion within the video frame. 

The method on probabilistic multi-cue information 
fusion is sketched as follows (Figure I),  

1. Object specific 3D reconstruction and range seg- 
mentation. 

2. Probabilistic modeling of object relevant 3D infor- 
mation. 

3. View based object detection using a probabilistic 
neural network. 

4. Bayesian decision fusion of 2D and 3D multi-cue 
confidence support maps. 

5. Maximum-A-Posteriori (MAP) classification with 
respect to the object confidence maps. 

The paper gives an outline of the probabilistic multi- 
cue object detection methodology and demonstrates 
preliminary results. 



2 Probabilistic object localization from 
3D information 

In order to achieve a probabilistic representation of 
object location, the 3D information is first recovered 
from a video frame sequence. In Mobile Mapping a p  
plications, object location refers in many cases to a 
ground plane (road, railroad embankment, etc.). Re- 
dundant data on object height is therefore used for ag- 
gregation of object evidence which is here formulated 
within a probabilistic framework to enable segmenta- 
tion and multi-cue fusion in the sequel. 

2.1 Recovery of 3D information 

3D reconstruction of the environment is here ac- 
complished by structure from motion. Corresponding 
points in successive images are obtained by a stereo 
matching tool (Hierarchical Feature Vector Matching, 
HFVM, [15]) which has been adopted for the case of 
motion stereo [16]. It generates a dense disparity map 
(correspondences on almost each pixel). For 3D recon- 
struction, the orientation of the camera with respect to 
the moving vehicle [27] is determined in a calibration 
step. We assume odometry and velocity information 
to be available for each image. This enables, together 
with the system calibration, the exact orientation of 
each camera position with respect to the route and to 
determine both the distance to a matched point and 
the exact position within 3D space. 

The idea of 3D object specific segmentation is based 
on the fact that - for many cases in Mobile Mapping - 
objects of interest are mounted vertical (Figure 2a,b). 
As a consequence, the projection of all measured ob- 
ject points generates an aggregation on the horizontal 
plane (Figure 2c). Stored in a digital elevation model 
(DEM), these aggregations can be easily segmented, 
e.g., by lowpass filtering and thresholding. Backprojec- 
tion of the identified segments gains ROI's in the input 
frame (Figure 2d). As a byproduct, for each pixel on 
these segments the distance as well as the global co- 
ordinates give important scaling information for the 
following object recognition steps. Additional valuable 
information such as a prediction for the track angles in 
the image, a prediction for the sky region, or the Focus 
of Expansion (FOE) can be extracted directly from the 
orientation data. 

2.2 Probabilistic representation of object 
location 

Each single object location - which has been derived 
from a point aggregation (Section 2.1) - impicitly repre 
sents uncertain information. We propose to model this 
local uncertainty by a multivariate unimodal Gaussian 
CP~(Y) ,  

with mean pj and covariance matrix Ej and with re- 
spect to a sample y within the ground plane. cpj(y) 
represents thus the probability density function given 
an object oj by p(yloj) (Figure 3(a)). 

Figure 2: Object specific segmentation of 3D informa- 
tion. (a) Video frame of reference, (b) vertically accen- 
tuated 3D structure (A-D), (c) 3D point aggregations 
from motion stereo, (d) associated 2D regions of inter- 
est. 

For each video frame and its mapping of 3D loca- 
tions onto the ground plane, one can automatically 
find the appropriate locations of means, p ., by apply- 
ing a clustering scheme. A statistically efhcientuseful 
cluster algorithm which naturally makes sense out of 
these local Gaussian distributions, is the eqectation- 
man'mization (EM) algorithm [7]. It approximates an 
entire distribution of samples by a mixture density 
model, i.e., 

where the parameters P ( j )  are the mixing coefficients. 
P ( j )  can be regarded as prior probabilities for the data 
points to have been generated from the jth component 
of the mixture. EM iteratively determines appropriate 
means and covariances so as to maximize the likelihood 
of the data with respect to this model. 

Each single cluster kernel - represented by the Gaus- 
sian - is then assumed to represent the localization 
uncertainty with respect to a single local 3D object. 
These confidence values are then backprojected into 
the input frame according to Section 2.1 (Figure 3, 
6(b). Backprojected points are members of cluster j 
(up to some confidence threshold) and result in a con- 
fidence support map with respect to object specific 3D 
information. 



Figure 3: (a) Single-class Gaussian with ellipsoid of 
uniform Mahalanobis distance to mean pj superim- 
posed, (b) projected confidences into 3D object related 
ROIs (zoomed out from Figure 6(b)). 

3 Probabilistic view based 
object detection 

Object recognition based on 2D information is a 
further operation concerned in a multi-cue detec- 
tion scheme. The classification is based on a model 
database of image templates which were, e.g., man- 
ually segmented from real imagery. Efficient object 
localization and detection is correspondingly outlined 
in [12, 171. The presented work outlines appearance 
based pattern matching in a probabilistic framework 
[12, 21, 191 to quantify the level of uncertainty in the 
classification and hence further enable reasoning on the 
dynamics of visual information. 

Appearance based representation The detection 
process is based on a recognition module operating on 
local image patterns which are successively extracted 
from the image (Figure 4). Appearance based object 
representations [13] consist of a collection of raw sensor 
footprints combining effects of shape and reflectance 
[12, 21, 191. In contrast, geometric models suffer 
from matching complexity and fail to work for com- 
plex shapes [8]. Instead of storing high-dimensional 
pixel patterns x, the sensor vector can be transformed 
by principal component analysis (PCA) to a low- 
dimensional representation y in feature space, called 
eigenspace [13]. It captures the m&mum variations in 
the presented data set whereas distances are a measure 
of image correlation [13, 121. Recognition is supported 
by the property that close points in subspace corre- 
spond to similar object appearances. 

Probabilistic matching Object representations 
with models of uncertainty in eigenspace require esti- 
mates of the data density [12]. The present system uses 
this concept under definition of a rejection class w.r.t. 

Figure 4: Object detection of traffic signs. Subwindows 
from the image are projected to eigenspace (PCA) and 
mapped by RBF networks for a probabilistic interpre- 
tation. 

background for a closed world interpretation [21]. A 
posterior neural classifier maps then the PCA descrip- 
tion to a distribution over predefined object classes 
[21, 181. Radial basis functions (RBF) networks [4, 211 
apply a Bayesian framework with density estimations 
provided by unsupervised clustering, where the confi- 
dence estimates are refined by supervised learning. The 
feature vector y is fed to the network and mapped to 
the output r,, K. = 1..0, 0 is the number of objects, 
for a posterior estimate, @(o,ly) = az,(y), a is a nor- 
malizing constant. A decision on object recognition is 
applied using a Maximum A Posteriori (MAP) decision 
on 2,. 

4 Multi-cue decision fusion for object 
detection 

Fusion with respect to 2D and 3D information on 
object specific evidence is here applied to the corre- 
sponding posterior estimation, i.e., the belief distri- 
butions related to 2D and 3D information. In par- 
ticular, Bayesian decision fusion [I, 61 is operated on 
the 2D and 3D multi-cue confidence support maps: A 
naive Bayes classifier [17] represents then the simpli- 
fied Bayesian update of the probability distribution on 
object hypotheses (results in Figure 6(d)). 

The fusion method is outlined as follows. In a set 
of 7 = l..r different confidence support maps, global 
confidence in the classification is updated by fusion of 
a 'current' cue specific belief $(o,lgr) with the inte- 
grated hypotheses $(o, lyl,. . . , yr-1). The overall b e  
lief in hypothesis o, is calculated by Bayesian inversion 
[221, $ ( ~ ~ l ~ i , . . . , ~ r )  = a$(~i , . . . ,~ r lo , )6(o , ) ,  where 
a is a normalizing constant. Recursive updating is sim- 
plified assuming conditional independence of the mea- 
surements [22] which implies 

A local decision on object identity is then performed 
via Maximum-A-Posteriori (MAP) [ll] classification 
with respect to a location represented in the F con- 
fidence maps. 



5 Experimental results 

The presented multi-cue detection system is a gen- 
eral purpose system to automatically localize objects 
such as traffic signs [17], subway or railway objects 
[IS], etc. The images used for the experiment were 
captured from top of the measurement waggon of the 
Austrian Federal Railways, during a regular train trip 
from Vienna to Graz. 

For the 2D detection classifier, the posterior be- 
lief function was estimated by a radial basis functions 
(RBF) neural network classifier which was trained us- 
ing 724 sample templates from 7 highly relevant sign 
classes. The evidence contributed by different R,G,B 
channels was fused according to a classifier combina- 
tion [17] to receive increased detection performance, 
i.e., M 89% recognition accuracy on the complete test 
set, including severe illumination changes and noise in 
the image extraction [IS]. A detailed description of the 
2D recognition experiments is found in [17]. 

The performance of the 3D segmentation method 
was monitored on extended video frame sequences, 
mostly demonstrating robust performance [16, 181. 
However, in rare cases the 3D information was not re- 
covered, possibly due to the large extent of visual mo- 
tion which is encountered when the observer is in the 
process of passing by. Since a detection system must 
minimize its resulting negative false classifications and 
should not overlook any objects along the route, these 
cases require even more robust methods as the pre- 
sented multi-cue information fusion. 

Figure 6(a) depicts a typical video frame from a rail- 
way route including a near range object (traffic light). 
Here, the resulting scatter image of the ground plane 
(Figure 5(a)) will not enable an accurate localization. 
Therefore, the scatter image is processed by the EM 
clustering algorithm (Section 2.2, Figure 5(b)) to pro- 
vide a probabilistic representation of object location. 
The cluster points are then backprojected into 2D (Fig- 
ure 6(b)) to enable information fusion (section 4). Fig- 
ure 6(c) illustrates the confidence support map as result 
of the 2D classifier. The final confidence map accord- 
ing to pixel-wise multi-cue decision fusion is presented 
in Figure 6(d). It is clearly seen that the fusion oper- 
ation is capable to 'wash out' multiple erroneous and 
ambiguous confidence values from 3D and 2D process- 
ing. 

6 Discussion 

The presented work provides a system prototype 
that successfully demonstrates the concept of multi- 
cue - i.e., 2D and 3D - information fusion within a 
probabilistic framework, with the aim to render object 
detection more robust. The method represents a start- 
ing point for more complex Mobile Mapping systems 
that would be capable to perform reasoning for the ef- 
ficient use of uncertain multi-cue visual information. 

This paper demonstrates preliminary work which 
we account as a promising basis to profoundly investi- 
gate multi-cue fusion with respect to various informatio 
sources. Future work will focus on extended statistical 
evaluations of the presented system, the effect on multi- 
frame tracking and decision fusion on spatio-temporal 
cues, and on attention based mechanisms that enable 
efficient use of the given visual information. 

Vorsignal (back) - VSb 

Fahrleitungssignal- FS 

Geschwindigkeitstafel-GT pJ 
Signalnachahmer-SNA 

Table 1: Object classes for traffic lightlsign recogni- 
tion (object terminology according to Austrian Federal 
Railways). 
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