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Abstract 

The next generation of computers might be literally 
wearable. Our vision of such a wearable computing de- 
vice is an intelligent assistant, which is always with you 
and helps you to solve your every day tasks. Besides 
size and power, an important challenge is how to in- 
teract with wearable computers. An important aspect 
and unique opportunity of a wearable device is that it 
can perceive the world from a first-person perspective: 
a wearable camera can see what you see in order to 
analyze, model, and recognize things and people which 
are around you. In this paper we argue that a promis- 
ing direction for interaction is to make the computers 
more aware of the situation the user is in and to model 
the user's context. Wearable cameras, mounted to the 
user's glasses, can recognize what the user is looking 
at,  estimate the user's location, and model what the 
user is doing. 

1 Introduction 

To date, personal computers have not lived up to  
their name. Most machines sit on the desk and in- 
teract with their owners for only a small fraction of 
the day. Smaller and faster notebook computers have 
made mobility less of an issue, but the same staid user 
paradigm persists. Wearable computing hopes to shat- 
ter this myth of how a computer should be used. A 
personal computer should be worn, much as eyeglasses 
or clothing are worn, and continuously interact with 
the user based on the context or the situation. With 
heads-up displays, unobtrusive input devices, personal 
wireless local area networks, and a host of other con- 
text sensing and communication tools, the wearable 
computer may be able to act as an intelligent assis- 
tant. 

In the near future, the trend-setting professional 
may wear several small devices, perhaps literally built 
into their clothes. That way, the person may conve- 
niently check messages, finish a presentation or browse 
the web while sitting on the subway or waiting in line 
a t  a bank. Such wearable devices may enhance the 
person's memory by providing instant access to impor- 
tant information anytime anywhere. Operating these 
devices however will be an important issue. Often to- 
day's computers require your full attention and both 
hands to be operated. You have to stop everything 

you are doing and concentrate on the device [5]. Using 
speech for input and output will become more popular 
but may be quite annoying in many situations. Imag- 
ine for example your neighbor on a cross Atlantic flight 
constantly talking and chatting with his or her devices. 

Wearable devices promise to be less disruptive, and 
may interact with people differently from other tools. 
A computational device that is with you all the time 
can influence the sense of who you are and what you 
can do. Just as we have adapted to cellular phones, 
watches and other personal devices, wearable comput- 
ers are likely to shape our personal habits around them. 
Starting with technophiles and migrating to the aver- 
age person, culture over time will shift to incorporate 
them. It is too early to tell which approach to wearable 
design will prove popular. The devices can be built in 
many ways, and it will take a fashion and style battle 
to determine what people really want to buy. 

Although their potential is vast, many of these de- 
vices suffer from a common problem: they are mostly 
oblivious to you and your situation. They don't know 
what information is relevant to you personally or when 
it is socially appropriate to "chime in." The goal in 
solving this problem is to make electronic aids that 
behave like a well-trained butler or an intelligent as- 
sistant. They should be aware of the user's situation 
and preferences, so they know what actions are ap- 
propriate and desirable - a property we call "situation 
awareness." They should also make relevant informa- 
tion available before the user asks for it and without 
forcing it on the user - a feature we call "anticipation 
and availability." 

An important aspect of a wearable device is that it 
can perceive the world from a first-person perspective: 
a wearable camera can see what you see and a wear- 
able microphone can hear what you hear in order to 
analyze, model and recognize things and people which 
are around you. A promising direction for interaction 
with wearable devices is therefore to make the comput- 
ers more aware of the situation the user is in and to 
model the user's context. Wearable cameras, mounted 
to the user's glasses, can recognize what the user is 
looking at and model what the user is doing. Using 
sensors of various types, the device can also monitor 
the user's choices and build a model of his or her pref- 
erences. A person may actively train the computer by 
saying, "Yes, that was a good choice; show me more," 
or "No, never suggest me this again." The models can 



also work solely by statistical means, gradually compil- 
ing information about the user's likes and dislikes, and 
coupling those preferences to the context. For antic- 
ipation and availability, the wearable device can take 
a few key facts about the user's situation to prompt 
searches through a digital database or the World Wide 
Web. The information obtained in this manner would 
then be presented in an accessible, secondary display 
outside the user's main focus of attention. 

The importance of context in communication and 
interface cannot be overstated. In human-to-human 
communication contextual information such as phys- 
ical environment, time of day, mental state, and the 
model each conversant has of the other participants 
can be critical in conveying necessary information and 
mood. Using small body-mounted sensors such as cam- 
eras may enable wearable computers to model and 
recognize the context of the user and the situation. 
As processing power increases, a wearable computer 
can spend more time observing its user to provide 
serendipitous information, manage interruptions and 
tasks, and predict future needs without being directly 
commanded by the user. This contextual informa- 
tion is one way to achieve seamless interaction with 
the user. We believe that the use of wearable sen- 
sors such as head-mounted cameras or wearable micro- 
phones combined with software to model and recognize 
the user's situation and context has the potential to 
change human-computer interaction fundamentally. 

Obviously, a computer interface which uses contex- 
tual and situational information to its fullest is more 
of a long-term goal than what will be addressed in 
this paper. However, in the following sections we show 
how computer interfaces may become more contextu- 
ally aware through machine vision techniques. In this 
paper we describe two camera augmented wearable sys- 
tems. The first system (section 2) uses a head-mounted 
camera to record and analyze the visual environment of 
the user as well as to recognize objects the user is look- 
ing at.  The system can hypothesize which part of the 
visual environment is interesting to the user and may 
display information about it when appropriate. The 
second camera augmented wearable system (section 3) 
is a computer vision driven assistant for the real-space 
game Patrol. The goal of this assistant is to track the 
wearer's location and current task through computer 
vision techniques and without off-body infrastructure. 

2 Recognition of Objects using Wear- 
able Cameras 

The first example of a wearable camera augmented 
computing system is a perceptual remembrance agent, 
which uses a head-mounted camera to record and an- 
alyze the visual environment of the user. In particular 
a computer vision program recognizes objects in the 
visual field of view of the user in real-time and displays 
information the user has associated with them. 

An important part of the system is the generic ob- 
ject recognizer which is based on a sound statistical 
Bayesian framework for object modeling and recogni- 
tion [9]. Objects are represented by multidimensional 

receptive field histograms of vector responses from lo- 
cal neighborhood operators. The approach can be used 
to determine the most probable object, independent 
of its position, scale and image-plane rotation. The 
technique is considerably robust to view-point changes. 
The probabilistic recognition algorithm can determine 
the probability of each object based only on a small 
portion of the image (15%-30%) and is capable to rec- 
ognize 100 objects correctly in the presence of view- 
point and scale changes. The recognition system runs 
a t  approximately 10Hz. 

An application of this camera augmented wearable 
system is the museum-gallery guide. A museum is a 
rich visual environment and is often accompanied with 
facts and details (from a guide, text or web-page) to  
be associated with the paintings. For example, as you 
walk around in a museum you can record video clips of 
a guide's explanation of the paintings. Such video clips 
can then be associated with the painting itself so th&t 
every time you and the wearable system see the paint- 
ing again the associated video-clip is replayed. The sys- 
tem has been presented publicly several times includ- 
ing SigGraph 1999 (USA), Darpa Image Understand- 
ing Workshop 1998 (USA), Nicograph 1998 (Japan), 
Heinz-Nixdorf Museum Paderborn Podium 1999 (Ger- 
many) and Orbit 2000 (Switzerland) and has been used 
each time by several hundred people. 

An important aspect of the system is that it not only 
recognizes which painting a user is looking a t  but aIso 
knows how long the user actually looked at it. This 
piece of information can be used directly in various 
ways: depending on the duration the user looks a t  a 
painting the wearable system may offer to  deliver more 
information about that painting for example by access- 
ing the database of the museum. By assuming that the 
duration of looking a t  a painting is correlated with the 
user's interest and by memorizing which paintings the 
user looked at ,  the system may be able to profile the 
interests of the user. Depending on such profiles the 
system could then suggest other paintings in the mu- 
seum. The museum could also attempt to  create a 
database of user-profiles, which could be used to  give 
suggestion to new visitors (depending on their user- 
profile) or to analyze the organization and effectiveness 
of a particular exhibition. Even though we have not 
experimented with the above-mentioned extensions of 
the system intensively we believe that extensions like 
these will greatly leverage the usefulness and usability 
of wearable computing devices. 

The system's building blocks are depicted in Fig- 
ure 1. Section 2.1 describes the generic object recogni- 
tion algorithm and section 2.2 the overall system. 

2.1 Generic Object Recognition System 

The video camera used by the system is aligned with 
the line of sight of the user (see figure 1). Therefore, 
by gazing at interesting objects, the user directs the in- 
put to the recognition system which continuously tries 
to recognize previously recorded objects. The recogni- 
tion results are then sent to the audio-visual associative 
memory system which plays the appropriate clip. 

The generic object recognition system used has been 
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Figure 1: System's architecture 

proposed by Schiele and Crowley [8,9]. A major result 
of the work is that a statistical representation based on 
local object descriptors provides a reliable means for 
the representation and recognition of object appear- 
ances. 

Objects are represented by multidimensional his- 
tograms of vector responses from local neighborhood 
operators. Figure 2 shows two examples of two- 
dimensional histograms. Simple matching of such his- 
tograms (using x2-statistics or intersection [9]) can be 
used to determine the most probable object, indepen- 
dent of its position, scale and image-plane rotation. 
Furthermore the approach is considerably robust to  
view point changes. This technique has been extended 
to probabilistic object recognition [9], in order to deter- 
mine the probability of each object in an image only 
based on a small image region. Experiments (briefly 
described below) showed that only a small portion of 
the image (between 15% and 30%) is needed in or- 
der to recognize 100 objects correctly. In the follow- 
ing we summarize the probabilistic object recognition 
technique used. The current system runs a t  approxi- 
mately lOHz on a Silicon Graphics 0 2  machine using 
the OpenGL extension library for real-time image con- 
volution. 

Multidimensional receptive field histograms are con- 
structed using a vector of arbitrary linear filters. Due 
to the generality and robustness of Gaussian deriva- 
tives, we selected multidimensional vectors of Gaus- 
sian derivatives (e.g. the magnitude of the first deriva- 
tive and the Laplace operator at two or three different 
scales). 

It is worthwhile to point out that the object repre- 
sentation is very general and can be used for a wide 
variety of objects. The objects most suited for the rep- 
resentation contain enough local texture and structure 
to be coded by the multidimensional histograms. A 
useful feature of the recognition system is that it often 
matches visually similar objects such as two business 
cards from the same company. In order to discriminate 
these cards a more specific system such as a character 
recognition system should be used. Since the response 

Figure 2: Two-dimensional histograms of two objects 
corresponding to a particular viewpoint, image plane 
rotation and scale. The image measurement is given by 
the Magnitude of the first derivative and the Laplace 
operator. The resolution of each histogram axis is 32. 

time of the system is only in the order of looms we are 
planning to use the result of the system to trigger more 
specific recognition systems as appropriate. 

2.1.1 Probabilistic Object Recognition 

In order to recognize an object, we are interested in 
computing the probability of the object On g' iven a 
certain local measurement Mk (here a multidimen- 
sional vector of Gaussian derivatives). This probability 
p(OnlMk) can be calculated using Bayes rule: 

with 

p(On) the a priori probability of the object On, 

p(Mk) the a priori probability of the filter output 
combination Mk, and 

p(MklOn) the probability density function of ob- 
ject On, which differs from the multidimensional 
histogram of an object On only by a normalization 
factor. 

Having K independent local measurements MI ,  M2, 
. . . , MK we can calculate the probability of each object 
On by: 

Mk corresponds to a single multidimensional recep- 
tive field vector. Therefore K local measurements Mk 
correspond to K receptive field vectors which are typi- 
cally from the same region of the image. To guarantee 
independence of the different local measurements we 
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choose the minimal distance d(Mk, Ml) between two 
measurements Mk and Ml to be sufficiently large (in 
the experiments below we chose the minimal distance 
d(Mk,Ml) L 20). 

In the following we assume all objects to be equally 
probable: p(On) = with N the number of objects. 
We use p(Mk) = Ci p(Mk IOi)p(Oi) for the calculation 
of the a priori probability p(Mk).  Since the probabil- 
ities p(Mk(On) are directly given by the multidimen- 
sional receptive field histograms, Equation (1) shows a 
calculation of the probability for each object On based 
on the multidimensional receptive field histograms of 
the N objects. Perhaps the most remarkable property 
of Equation (1) is that no correspondence needs to be 
calculated. That means that the probability can be 
calculated for arbitrary points in the image. F'urther- 
more the complexity is linear in the number of image 
points used. 

Equation (1) has been applied to  a database of 103 
objects 191. In an experiment 1327 test images of the 
103 objects have been used which include scale changes 
up to f 40%, arbitrary image plane rotation and view 
point changes. Figure 3 shows results which were ob- 
tained for six-dimensional histograms, e.g. for the fil- 
ter combination Dx - Dy (first Gaussian derivatives in 
x- and y-direction) at three different scales (a = 2.0, 
= 4.0 and = 8.0). A visible object portion of approxi- 
mately 62% is sufficient for the recognition of all 1327 
test images (the same result is provided by histogram 
matching). With 33.6% visibility the recognition rate 
is still above 99% (10 errors in total). Using 13.5% of 
the object the recognition rate is still above 90%. More 
remarkably, the recognition rate is 76% with only 6.8% 
visibility of the object. See [9] for further details. 

Figure 4: Sample Output Through heads-up-display 

2.2 Overview of the system 
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The following describes the audio-visual association 
module and gives a short overview of the hardware. 

Audio-Visual Associative Memory System: 
The audio-visual associative memory operates on a re- 
cord-and-associate paradigm. Audio-visual clips are 
recorded by the push of a button and then associated 
to an object of interest. Subsequently, the audio-visual 
associative memory module receives object labels along 
with confidence levels from the object recognition sys- 
tem. If the confidence is high enough, it retrieves from 
memory the audio-visual information associated with 
the object the user is currently looking a t  and overlays 
this information on the user's field of view. 

Whenever the user decides to record the current in- 
teraction, he moves his head mounted video camera 
and microphone to specifically target and shoot the 
footage required. Thus, an audio-video clip is formed. 
After recording such a clip, the user selects the object 
that should trigger the clip's playback. This is done by 
by directing the camera towards an object of interest 
and triggering the unit (i.e. pressing a button). The 
system then instructs the vision module to add the cap- 
tured image to its database of objects and associate the 
object's label to  the most recently recorded A/V clip. 
Additionally, the user can indicate negative interest in 
objects which might get misinterpreted by the vision 
system as trigger objects (i.e. due to  their visual simi- 
larity to  previously encountered trigger-objects). Thus, 
both positive and negative reinforcement can be used 
in forming these associations. Therefore the user can 
actively assist the system to learn the differences be- 
tween uninteresting objects and important cue objects. 

Whenever the user is not recording or associating, 
the system is continuously running in a background 
mode trying to find objects in the field of view which 
have been associated to an A/V sequence. The system 
thus acts as a parallel perceptual remembrance agent 
that is constantly trying to recognize and explain - by 
remembering associations - what the user is paying at- 
tention to. Figure 4 depicts an example of the overlay 
process. Here, in the top of the figure, an "expert7' 
is demonstrating how to change the bag on a vacuum 
cleaner. The user records the process and then asso- 
ciates the explanation with the image of the vacuum's 
body. Thus, whenever the user looks at the vacuum 
(as in the bottom of the figure) he or she automati- 
cally sees an animation (overlaid on the left of his field 
of view) explaining how to change the dust bag. The 
recording, association and retrieval processes are all 



performed online in a seamless manner. 

2.2.1 Wearable Computer Interface 

In it important to note that any wearable system has 
to  be useful and usable by the person wearing it. Ide- 
ally we would like a non-intrusive system that does not 
require new infrastructure to be incorporated in the 
environment - such as tags, infrared transmitters, etc. 
- and which can be used in a seamless way by its user. 

Using a camera attached to the user's eye glasses and 
the generic real-time computer vision object recogni- 
tion system described in section 2.1 our system is able 
to perceive, identify and recognize the objects that the 
user is looking at.  Using such a vision system circum- 
vents many problems associated with tagging technolo- 
gies, such as cost, size, range, power consumption and 
flexibility. From a perceptual viewpoint, the system (in 
the same way as some other wearable systems [3,10,7]) 
sees what the user sees and hears what the user hears, 
being closer to the user's perception of the world. 

VlSUA L ASSOCIATED 
TRIGGER I SEQUENCE 

Figure 5: Associating A/V Sequences to Objects 

The primary functionality of the system is imple- 
mented in a simple 3 button interface (via a wireless 
mouse). The user can select from a record button, an 
associate button and a garbage button. The record 
button stores the A/V sequence. The associate but- 
ton merely makes a connection between the currently 
viewed visual object and the previously recorded se- 
quence. The garbage button associates the current vi- 
sual object with a NULL sequence indicating that it 
should not trigger any play back. This helps resolve 
errors or ambiguities in the vision system. This asso- 
ciation process is shown in Figure 5. In the current 
implementation of the system the interface is literately 
a three button interfaces. Obviously a small vocab- 
ulary speech recognizer could be used to replace the 
three buttons with spoken words. 

2.2.2 Hardware 

Currently, the system is fully tetherless with wireless 
radio connections allowing the user to roam around a 
significant amount of space (i.e. a few office rooms). 
Plans for evolving the system into a fully self-sufficient, 
compact and affordable form are underway. However, 
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Figure 6: The Wearable Hardware System 

for initial prototyping, a wireless system linked to off 
board processing was acceptable. 

Figure 6 depicts the major components of the sys- 
tem which are worn by the user during operation. The 
user wears standard sun or eye glasses with a MicroOp- 
tical display attached. Also attached to the glasses is 
an ELMO video camera (with wide angle lens) which 
is aligned as closely as possible with the user's line of 
sight [lo]. Thus the vision system is directed by the 
user's head motions to interesting objects. In addi- 
tion, a nearby microphone is incorporated. The A/V 
data captured by the camera and microphone is con- 
tinuously broadcast using a wireless radio transmitter. 
This wireless transmission connects the user and the 
wearable system to an SGI 0 2  workstation where the 
vision and other aspects of the system operate. The 
workstation collects the A/V data into clips, scans the 
visual scene using the object recognition system, and 
transmits the appropriate A/V clips back to the user. 
The clips are then displayed on the user's MicroOpti- 
cal. Two A/V wireless channels are used at all times 
for a bi-directional real-time connection (user to SGI 
and SGI to user). 

3 Recognition of Location and Action 
of the User with Wearable Cameras 

The second camera augmented wearable computing 
system is designed for the real-space game called Pa- 
trol. Patrol is a game played by MIT students every 
week in a campus building and provides a scenario to 
test techniques in less constrained environments. The 
participants are divided into teams denoted by colored 
headbands. Each participant starts with a rubber suc- 
tion dart gun and a number of darts. After proceeding 
to the second floor to "resurrect" the teams converge on 
the basement, mezzanine, and first floors to hunt each 



Figure 7: The Patrol cap with two cameras (left). The larger, visible camera points downward and a second, smaller 
camera faces forward (hidden by the brim). On the right are two images taken with the two cameras respectively. 

other. When shot with a dart, the participant removes 
his headband, and proceeds to the second floor before 
replacing his headband and returning. While there 
are no formal goals besides shooting members of other 
teams, some players emphasize stealth, team play, or 
holding "territory". Originally, Patrol provided an en- 
tertaining way to  test the robustness of wearable com- 
puting techniques, such as hand tracking for the sign 
language recognizer [l 11 . However, it quickly became 
apparent that the gestures and actions in Patrol pro- 
vided a relatively well-defined language and goal struc- 
ture in a very harsh "real-life" sensing environment. As 
such, Patrol became a context-sensing project within 
it,self. Here we shortlv discuss some work on deter- 
mining player location and task using purely on-body 
wearable cameras. 

In this scenario, a two cap-mounted cameras per- 
form sensing. The first camera points downwards to 
watch the hands and body. The other, smaller cam- 
era points forward to observe what the user sees. Each 
camera is fitted with a wide-angle lens (see Figure 7 
for sample images). In the Patrol task, location and 
action of the user is determined solely based on the 
images provided by those cameras. There are used to  
determine the location of the player inside the build- 
ing as well as to  model and recognize the action of the 
player such as aiming, reloading and shooting of the 
dart guns. This information about the action and loca- 
tion of the player is not only valuable for the wearable 
computer of the respective player but can be trans- 
mitted to other team members. That way other team 
members are aware of ongoing fights, which team mem- 
bers are involved and how they are positioned to  each 
other. A team strategist may for example deploy this 
kind of information as appropriate for maintaining ter- 
ritory. 

3.1 Location 

User location often provides a valuable clue to the 
user's context. For example, if the user is in his super- 
visor's office, he is probably in an important meeting 
and does not want to be interrupted for a phone call or 
an email unless it is an emergency. By gathering data 
over many days, the user's motions throughout the day 
might be modeled. This model may then be used to 
predict when the user will be in a certain location and 

for how long. Such information may be invaluable for 
network caching in the case that the user's wireless net- 
work does not provide coverage everywhere on a cam- 
pus. Several options exist for outdoor positioning such 
as GPS. However, indoor systems are much less promi- 
nent. Active badge systems [12] and beacon architec- 
tures [4] can trade varying levels of accuracy with the 
amount of infrastructure that must be installed and 
maintained. The system described here identifies the 
user's location solely based on sensing without need for 
off-body infrastructure. The Patrol environment con- 
sists of 14 rooms that are defined by their strategic im- 
portance to the players. The rooms' boundaries were 
not chosen to simplify the vision task but are based 
on the long standing conventions of game play. The 
playing areas include hallways, stairwells, classrooms, 
and mirror image copies of these classrooms whose sim- 
ilarities and "institutional" decor make the recognition 
task difficult. However. four of the ~ossible rooms have 
relatively distinct co1o;ation and fuminance combina- 
tions, though two of these are not often traveled. 

Hidden Markov models (HMM's) were chosen to  
represent the environment due to their potential lan- 
guage structure and excellent discrimination ability for 
varying time domain processes. For example, rooms 
may have distinct regions or lighting that can be mod- 
eled by the states in an HMM. In addition, the previ- 
ous known location of the user helm to limit his cur- 
rent possible location. By observing the video stream 
over several minutes and knowing the physical layout of 
the building, many possible paths may be hypothesized 
and the most probable chosen based on the observed 
data. Prior knowledge about the mean time spent in 
each area may also be used to weight the probability 
of a given hypothesis. HMM's fully exploit these at- 
tributes. A full review of HMM's is not appropriate 
here, but the reader should see [2, 61 for HMM imple- 
mentation details and tutorials. 

As a first attempt, the mean colors of three video 
patches are used to construct a featurc vector in real- 
time. One patch is taken from approximately the cen- 
ter of the image of the forward looking camera. The 
means of the red, green, blue, and luminance pixel 
values are determined, creating a four element vec- 
tor. This patch varies significantly due to the continual 
head motion of the player. The next patch is derived 
from the downward looking camera in the area just to 



the front of the player and out of range of average hand 
and foot motion. This patch represents the coloration 
of the floors. Finally, since the nose is always in the 
same place relative to  the downward looking camera, a 
patch is sampled from the nose. This patch provides a 
hint a t  lighting variations as the player moves through 
a room. Combined, these patches provide a 12 element 
feature vector. 

Approximately 45 minutes of Patrol video were an- 
alyzed for this experiment. Processing occurs a t  10 
frames per second on an SGI 0 2 .  Missed frames are 
filled by simply repeating the last feature vector up to 
that point. The video is then subsampled to six frames 
per second to create a manageable database size for 
HMM analysis. The video is hand annotated using a 
VLAN system to provide the training database and a 
reference transcription for the test database. When- 
ever the player steps into a new area, the video frame 
number and area name are recorded. Both the data 
and the transcription are converted to Entropic's HTK 
[13] format for training and testing. 

For this experiment, 24.5 minutes of video, compris- 
ing 87 area transitions, are used for training the HMMs. 
As part of the training, a statistical (bigram) grammar 
is generated. This "grammar" is used in testing to 
weight those rooms which are considered next based 
on the current hypothesized room. An independent 
19.3 minutes of video, comprising 55 area transitions, 
are used for testing. Note that the computer must seg- 
ment the video a t  the area transitions as well as label 
the areas properly. 

Table 1 demonstrates the accuracies of the different 
methods tested. For informative purposes, accuracy 
rates are reported both for testing on the training data 
and the independent test set. Accuracy is calculated 
by 

N - D - S - I  
Acc = 

N  

where N  is the total number of areas in the test set, 
D  (deletions) is the number of area changes not de- 
tected, S  (substitutions) is the number of areas falsely 
labeled, and I  (insertions) is the number of area tran- 
sitions falsely detected. Note that, since all errors are 
counted against the accuracy rate, it is possible to get 
large negative accuracies by having many insertions, as 
shown by several entries of the table. 

Table 1: Patrol area recognition accuracy 

The simplest method for determining the current 
room is to determine the smallest Euclidean distance 

between a test feature vector with the means of the fea- 
ture vectors comprising the different room examples in 
the training set. In actuality, the mean of 200 video 
frames surrounding a given point in time is compared 
to the room classifications. Since the average time 
spent within an area is approximately 600 video frames 
(or 20 seconds), this window should smooth the data 
such that the resulting classification shouldn't change 
due to small variations in a given frame. However, 
many insertions still occur, causing the large negative 
accuracies shown in Table 1. 

Given the nearest neighbor method as a comparison, 
it is easy to see how the time duration and contextual 
properties of the HMM's improve recognition. Table 
1 shows that the accuracy of the HMM system, when 
tested on the training data, improves as more states are 
used in the HMM. This results from the HMM's over- 
fitting the training data. Testing on the independent 
test set shows that the best model is a 3-state HMM, 
which achieves 82% accuracy. The topology for this 
HMM is shown in Figure 8. In some cases accuracy 
on the test data is better than the training data. This 
effect is due to the grammar which limits the possible 
transitions between areas. Once a wrong turn has been 
made, the system can pass through many areas before 
converging again with the correct path. The longer the 
test path, the higher the potential for being misled for 
extended periods of time. 

Figure 8: HMM topology for Patrol. 

Accuracy is but one way of evaluating the methods. 
Another important attribute is how well the system de- 
termines when the player has entered a new area. Fig- 
ure 9 compares the 3-state HMM and nearest neighbor 
methods to  the hand-labeled video. Different rooms 
are designated by two letter identifiers for convenience. 
As can be seen, the 3-state HMM system tends to be 
within a few seconds of the correct transition bound- 
aries while the nearest neighbor system oscillates be- 
tween many hypotheses. Changing the size of the aver- 
aging window might improve accuracy for the nearest 
neighbor system. However, the constantly changing 
pace of the Patrol player necessitates a dynamically 
changing window. This constraint would significantly 
complicate the method. In addition, a larger window 
would result in less distinct transition boundaries be- 
tween areas. 

Figure 9: Typical detection of Patrol area transitions. 

As mentioned earlier, one of the strengths of the 
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HMM system is that it can collect evidence over time 
to hypothesize the player's path through several ar- 
eas. How much difference does this incor~oration of 
context make on recognition? To determine this, the 
test set was segmented by hand, and each area was pre- 
sented in isolation to the 3-state HMM system. At face 
value this should be a much easier task since the system 
does not have to segment the areas as well as recognize 
them. However, the system only achieved 49% accu- 
racy on the test data and 78% accuracy on the training 
data. This result provides striking evidence of the im- 
portance of using context in this task and hints a t  the 
importance of context in other user activities. 

While the current accuracy rate of 82% is good, sev- 
eral significant improvements can be made. Optical 
flow or inertial sensors could limit frame processing to 
those times when the player is moving forward. This 
would eliminate much of the variation, often caused by 
stand-offs and firefights, between examples of moving 
through a room. Similarly, the current system could be 
combined with optical flow to compensate for drift in 
inertial trackers and pedometers. Windowing the test 
data to the size of a few average rooms could improve 
HMM accuracies as well. Additionally, instead of the 
average color of video patches, color histograms could 
be used as feature vectors. Finally, all these techniques 
could be applied to create an automatic map of a new 
building as the Patrol player explored it. 

3.2 User Tasks 

By identifying the user's current task, the computer 
can assist actively in that task by displaying timely 
information or automatically reserving resources that 
may be needed [I]. However, a wearable computer 
might also take a more passive role, simply determin- 
ing the importance of potential interruptions (phone, 
email, paging, etc.) and presenting the interruption in 
the most socially graceful manner possible. For exam- 
ple, while driving alone in an automobile, the system 
might alert the user with a spoken summary. How- 
ever, during a conversation, the wearable computer 
may present the name of a potential caller unobtru- 
sively in the user's head-up display. 

In order to determine the user's action the same 
recognition system as in section 2 is employed. In the 
context of the Patrol data the system can be used for 
recognition of image patches, which correspond to par- 
ticular appearances of a hand, the gun, a portion of an 
arm, or any part of the background. Feeding the calcu- 
lated probabilities as feature vectors to  a set of hidden 
Markov models (HMM's) it is possible to recognize dif- 
ferent user tasks such as aiming and reloading. Since 
aiming and shooting are very similar actions, we con- 
sider them as the same task. Aiming can be recognized 
very well, since it is relatively distinctive with respect 
to reloading and "everything-else" . However, reloading 
and "everything-else" are difficult to distinguish, since 
the reloading action happens only in a very small re- 
gion of the image (close to the body) and is sometimes 
barely visible. See [lo] for a more detailed description 
of the system and results. 

4 Discussion and Conclusions 

By observing context, wearable computers can aid 
in task and interruption management, provide just-in- 
time information, and make helpful predictions of fu- 
ture behavior. Through head mounted wearable cam- 
eras and machine vision techniques, several examples 
of contextually aware interfaces are presented in this 
paper. 

The systems described above suggest that computer 
vision can indeed be applied in a wearable setting. An 
interesting and important aspect of wearable cameras 
is that they process information, namely visual infor- 
mation, which is extremely familiar to the user. There- 
fore the system can use visual information not only to 
analyze, model, and recognize what the user sees but 
also to communicate with the user. The above systems 
have used visual information to  recognize what the user 
looks at,  to determine the user's location indoors, and 
to recognize a set of gestures and actions the user is 
performing. Such information might proof invaluable 
for novel and interesting interfaces. 

Recognizing objects in a wearable scenario demands 
a high degree of robustness of the object recognition 
module not only with respect to scale and viewpoint 
changes but also with respect to realistic environmen- 
tal changes. We have been able to demonstrate that 
recognition with wearable cameras is possible in scenes 
of realistic complexity and of realistic environmental 
conditions. The number of objects (loo+) which can 
be distinguished is still quite small and does not yet 
allow large scale deployment. However, by using the 
user's location and context environment we can imple- 
ment systems with compelling functionality and con- 
text awareness already today. 

As an extension of the Patrol task and by using 
glass-mounted displays, the players could keep track 
of each other's locations. A strategist can deploy the 
team as appropriate for maintaining territory. If aim 
and reload gestures are recognized for a particular 
player, the computer can automatically alert nearby 
team members for aid. 

But contextual information can be used more sub- 
tly as well. For example, if the computer recognizes 
that its wearer is in the middle of a skirmish, it should 
inhibit all interruptions and information, except possi- 
bly an "X" on the person a t  whom the user is aiming. 
Similarly, a simple optical flow algorithm may be used 
to  determine when the player is scouting a new area. 
Again, any interruption should be inhibited. On the 
other hand, when the user is "resurrecting" or waiting, 
the computer should provide as much information as 
possible to prepare the user for rejoining the game. 

The model created by the HMM location system 
above can also be used for prediction. For example, 
the computer can weight the importance of incoming 
information depending on where it believes the player 
will move next. An encounter among other players sev- 
eral rooms away may be relevant if the player is moving 
rapidly in that direction. In addition, if the player is 
shot, the computer may predict the most likely next 
area for the enemy to visit and alert the player's team- 
mates as appropriate. Such just-in-time information 



can be invaluable in such hectic situations. [12] R. Want and A. Hopper. Active badges and per- 
Additional vision techniques such as optical flow or sonal interactive computing objects. IEEE Runs. 

motion differencing may be added to determine if the on Consumer Electronics, 38(1):10-20, Feb. 1992. 
user is standing, walking, running, visually scanning [13] S. Young. HTK: Hidden Markov Model Toolkit 
the scene, or using the stairs. Ultimately, with develop- V1.5. Cambridge Univ. Eng. Dept. Speech Group 
ment, systems based on vision and other sensor modal- and Entropic Research Lab. Inc., Washington DC, 
ities such as accelerometers and microphones might be 1993. 
used to  observe and model everyday user tasks and hu- 
man to human interactions. 
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