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Abstract 

Human skin color is a powerful fundamental cue that 
can be used in particular, at an early stage, for the 
important applications of face and hand detection in color 
images [ l ]  [2], and ultimately, for meaningful human- 
computer interactions. In this paper, we analyze the 
distribution of human skin for a large number of 
chrominance spaces and for skin images recorded with 
two different camera systems. By use of seven different 
criteria, we show that mainly the normalized r-g and CIE- 
xy spaces, or a space constructed with a suitable linear 
combination of normalized r, g and b values, are the most 
efficient for skin color-based image segmentation. In 
particular, they allow the use of a simple, single Gaussian 
skin chrominance model, and they yield the most robust 
skin distribution to a change of camera system. 

1. Introduction 

Image segmentation based on skin color (or skin pixel 
detection) is relatively robust to changes in illumination, 
in viewpoint, in scale, to shading, partial occlusions and to 
cluttered backgrounds as compared to the segmentation of 
gray-level images. Robustness of segmentation is 
generally achieved by separating the chrominance from 
the luminance in the original RGB color image, and by 
using only the chrominance for segmentation. This 
separation implies a dimensionality reduction by a 
suitable, linear or non-linear transformation from the 3-D 
RGB color space into a 2-D chrominance space. One 
important issue is the selection of an efficient 
chrominance space, which motivates an analysis of human 
skin color for different chrominance spaces: the 
performance of face and hand detection depends critically 
on the performance of segmentation, which in turn 
ultimately depends on the chrominance space that is used. 
In particular, for a given set of skin sample images or 
sample pixels that is collected for calibration before 
applying the segmentation, the space that is selected 
determines the shape of the skin chrominance distribution, 
which in turn determines the complexity of the skin 
chrominance model that is required in order to obtain a 
high quality of segmentation. The skin chrominance 
distribution also depends on the various skin groups that 
are considered (Asians, Caucasians, dark skin groups), the 
illumination conditions under which the color images 
were recorded, and on the camera system that is used to 
record the images. Finally, an important criterion that 

ultimately limits the quality of segmentation or of skin 
pixel detection is the degree of overlap, or discrimination, 
between the skin distribution and a distribution of "non- 
skin" pixels in a given chrominance space, which depends 
to some extent on the number of skin and non-skin pixels 
that are collected for calibration. To our knowledge, no in- 
depth comparative study of the efficiency of a large set of 
different chrominance spaces for skin color-based image 
segmentation has been performed, although we recently 
presented preliminary results for a relatively limited 
number of spaces [3]. 

In this paper, we analyze the distribution of human skin 
for a large set of 25 different color spaces (41 
chrominance spaces), for facial skin images recorded with 
two different camera systems, and in terms of seven 
different criteria. The color spaces considered here that 
result from a linear transformation from the RGB space 
are the IIIZ13 (Ohta's optimized color features [4]), hlh2h3 
(Wesolkowski's color space [5]), YCblCrl (using the CIE 
standard illuminant C) and YCb2Cr2 (using the CIE 
standard illuminant D65) [6] [7], YES (a standard space 
developed by the Xerox company), YIQ and YUV spaces. 
The color spaces that result from a non-linear 
transformation form a second group, that is divided into 4 
sub-groups: the normalized color spaces (r-g-b [8] [9], 
CIE-xyz [8] [9] for both standard C and D65 illuminants, 
and TSL [lo]), the perceptually plausible color spaces 
(CIE-DSH [8], HSV and HSL [I I]), the perceptually 
uniform color spaces (CIE-L*u*v* [8], CIE-L*a*b* [8], 
and Famsworth's F-uv space [8] [12], for both standard C 
and D65 illuminants), and other color spaces (C1C2C3, 
111213, and I1'l2'13' proposed as color invariants and used 
for viewpoint-invariant image retrieval and for color- 
based object recognition by Smeulders and Gevers in [I31 
[14], r.g and rg.b log-opponent space applied to color 
image indexing by Berens and Finlayson in [15], a'-b' 
space applied to the extraction of skin color areas in facial 
images by Kawato and Ohya in [16], mod-rgb space 
proposed by Tominaga in [171, PIP2 space used for the 
construction of the Fourier spectrum of the chromaticity 
by Vertan et a/. in [18], and (RIG, R/B, GfB) and YUV 
spaces). The conversions from the RGB space for both 
groups are shown in Tables 1-5. These Tables also show 
the boundaries of each space, as well as the dimensions 
used to calculate the discrete skin chrorninance histogram 
for each space. For all chrominance spaces considered in 
this paper, the histogram dimensions are selected such that 
the histogram resolution is the same for all spaces, in 
order to ensure a valid comparative study. 



Table 1. Linear Transformations from RGB color Table 3. Non-linear conversions from RGB color space 
space. into perceptually plausible color spaces. 

Table 2. Non-linear conversions from RGB color space Table 4. Non-linear conversions from RGB color space 
into normalized color spaces. into perceptually uniform color spaces. 
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Analysis 
We first define three different parameters that we use to 

perform a quantitative analysis of the skin chrominance. 
1) The Kullback-Leibler Divergence (KLD) [3] is selected 
to estimate the goodness of fit of the skin chrominance 
distribution to a simple, single elliptical Gaussian. It is 
defined in the discrete case as : 

= f g,, in(Y + f f w i j  ln[y 
i=l i=l j i = l  'ij (1) 

where Stii is considered as the "true" distribution (the 
normalized skin histogram observed in a discrete 
chrominance space with M x N bins) and Gii as the 
"estimated" or "model" distribution (the normalized ideal 
Gaussian histogram calculated from the mean vector and 
from the covariance matrix of the skin distribution in the 
same discrete space). The KLD has the following 
properties: i) KLD r 0 and ii) if KLD=O, then S'ii = Gii . 
Hence, the lower the value of the KLD, the higher the 
goodness of fit to the single Gaussian model. 
2) The Normalized Histogram Intersection (HIN) is a 
measure of the overlap between two different 
distributions, such as the skin and non-skin distributions 
In the discrete case, it is defined as: 

N M 
HIN = 7 7 min ( St1 , NS', ) 

,= ,= 
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where rvstij = NS$ / zz ~s~ is the normalized non-skin 

histogram calculated in the same discrete chrominance 
space as S'ij, with M x N bins. The lower the value of the 
HIN, the higher the degree of discrimination between the 
two distributions. 
3) The global shift S of a distribution can be calculated as: 

S = f (mxl  - mxz)L+ (myt - myzf (3) 
where m x = ( m x l , m x z l  and m y = ( m y t , m y s )  are the 
mean vectors for the skin distributions in a given 
chrominance space (x, y) for cameras 1 and 2. 

3. Skin Chrominance Analysis 

3.1 Experimental set-up 

Images of Asian and Caucasian subjects, and of 
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subjects with dark skin color, were recorded under slowly 
varying illumination conditions in an office environment 

Two separate sets of sample images used for the skin with both the SONY and the SGI camera systems. From 
chrominance analysis are recorded with an inexpensive the images obtained with the SONY camera, 65, 51 and 
SGI camera, and with a high-quality SONY DXC-9000 10 skin sample images of Asian, Caucasian, and dark 
camera system respectively. The seven criteria used for skin-colored subjects respectiveiy, were manually 
the analysis for each space are: 1) the robustness of the selected, yielding a total of 2.1 15xIOE+05, 
skin chrominance distribution with respect to the intrinsic 1.630xlOE+05, and 2.580xlOE+04 skin pixels for each 
variability of skin color (to three different skin groups), 2) respective skin group. When using the SGI camera, 11 1 
its compactness, 3) its shape, 4) the degree of skin sample images of both Asian and Caucasian subjects 
discrimination (or the overlap) between the skin and non- were manually selected, for a total of 1.5 15x1 OEM5 skin 
skin distributions, 5) the robustness (or "portability") of pixels. Also, 80 "non-skin" images were selected from 
the skin distribution to a change of camera system, 6) the various sources, mainly from the World Wide Web, 
relative robustness of the skin distribution to changes in producing a total of 2.6606xlOEW6 non-skin pixels. For 
illumination conditions, and finally, 7) the computational each image, the 24-bit RGB values are scaled between 0.0 
cost of the transformation from the 24-bit RGB (NTSC) and 1 .O. Achromatic pixels (including black) were 
space into a given chrominance space. assigned suitable values adapted to the particular color 

space that is considered, as shown in Tables 1-5. For each 
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space yielding negative chrominance values, a shift was 
performed so that all values are positive, without any 
influence on the results of the chrominance analysis. 
Generally, the discrete, cumulative skin and non-skin 
histograms are calculated over an entire space, except for 
the CIE-L*u*v and CIE-L*a*b* spaces, whose 
boundaries are curved, and for the log-opponent and 
R I  R?Rq spaces, where the range (hence the histogram 
dimensions) is determined empirically, by observing the 
skin and non-skin distributions (we used a range of [-1.0; 
2.01 along both the x and y axes for the log-opponent 
space, and of [0.0;2.0] for the R I R ~ R ~  space). The 
resolution of the skin and non-skin histograms is 0.01 unit 
for all spaces, except for the CIE-L*u*v* and CIE- 
L*a*b* spaces, where the resolution is 1.0 unit. 

3.2 Robustness to the intrinsic variability of skin 
color and compactness of the skin distribution 

As an example, Figure I shows the skin distribution 
separately for each of the three classes of subjects for the 
r-g, CIE-xy and H-S (HSV) spaces with the SONY 
camera. Table 6 shows the KLD and the HIN for the three 
skin groups for all spaces, when using the SONY camera. 

a1 Asians (b1 Caucasians (c1 Dark skin color 

CIE-xv chrominanct. snace 

H-S chrominance space (HSV color space) 

Figure 1. 2-D top view of the cumulative histograms in the 
normalized r-g (top), CIE-xy (middle) chrnminance spaces 
and in the H-S (HSV) space (bottom) of skin sample images 
of (a) Asian, (b) Caucasian subjects, and (c) of subjects with 
dark skin color, recorded with the SONY camera. Here, only 
the relevant part of the histogram is shown. 

Table 7 shows, for each space and for both cameras, the 
area of the skin distnbut~on relative to the area of the 
gamut of posslble colors (owing to the particular 
boundanes of the CIE-L*u*v*, CIE-L*a*b*, r-g-rg-b and 
R1R4R3 spaces, the area for these spaces is not shown). 
The gamut in all spaces with rectangular boundaries, 
except in the CIE-DSH, HSV and HSL spaces, fills only a 
part of the entire space defined by the space boundaries, 
and its geometry depends on the space that is considered, 
as Figure 2 illustrates by use of the non-skin distributions 
for a selected number of different spaces. The normalized 
CIE-xy and r-g spaces, as well as the a'-b', mod-gb and 
PI-P2 spaces yield the most robust distributions with 
respect to the intrinsic variability of skin color, because: 
1) the KLD is consistently lower across the three skin 
groups than for the other spaces, and 2) the overlap 
between the skin groups varies typically within a 
relatively narrow range, between 45% and 64% for most 
spaces. The l1I2l3, 11'12'13' and C1-C2 spaces yield the 
highest overlap, indicative of a higher robustness, but this 
advantage is offset by the large overlap between the skin 
and non-skin distributions in those spaces, as shown in 
Subsection 3.4. In almost all chrominance spaces, the 
distribution for the Asian subljects, who have an 
intermediate skin color, is the most compact, in terms of 
the relative area of the distribution, in particular in the r-g, 
CIE-xy, C,-C2, PI-P2, a'&' and mod-rgb spaces. 

3.3 Shape of the skin distribution 
A few representative examples of the cumulative 

distribution f i r  the Asian + ~ a i c a s i a n  subjects, obtained 
with both cameras, are shown in Figure 3, for the r-g, 
CIE-xy, E-S and CIE-u*v* chrominance spaces. Visually, 
the skin distribution in the normalized spaces fits well to 
the single Gaussian model, whereas in the un-normalized 
spaces, its shape is generally complex and cannot be 
described well by a simple model. Table 8 shows the KLD 
for all the chrominance spaces and for both cameras. 
Since the KLD is consistently lowest for the normalized 
CIE-xy and r-g spaces, together with the C2-C3, a'&', 

Chl -Crl r -  ClE-xv ( C  \ T-S (TSL) F-uv (C? 

11-13 1 2 -  a'-h' m.g-m.h PI-P2 
Figure 2. 2-D top view of the cumulative histograms in 
several selected chrominance spaces of 80 non-skin sample 
images collected from various sources. 

Normalized r-r 

Normalized CIE-xv 

S (YES color snace) 

CIE-u*v* 
Figure 3. 2-D top view of the cumulative histograms in the 
r-g, CIE-xy, E-S (YES) and CIE-u*v* chrominance spaces of 
skin sample images of Asian + Caucasian subjects recorded 
with the SONY camera (left column) and with the SGI 
camera (right column). 



Table 6. KLD and HIN for three different skin groups Table 7. Area of the skin distributions for the three different 
(Asians (A), Caucasians (C) and subjects with dark skin skin groups relative to the area of the gamut of all possible 
color (D) ), for 41 chrominance spaces and with the SONY colon in a given color space, for both camera systems. 

camera. 

I I 

A C 1 D I A/C / AID / C/D 

mg-mb and PIP2 spaces, the skin distribution in those 
spaces can be modeled by a single Gaussian. 

3.4 Discrimination between skin and non-skin 
distributions 

Table 8 shows the HIN for Asian + Caucasian subjects, 
for all the chrominance spaces and for both camera 
systems. For both camera systems, the overlap between 
the skin and non-skin distributions is lowest for the r-g, 
CIE-xy, TSL, CIE-DSH, HSV, CIE-L*u*v*, CIE-L*a*b*, 
C2-C3, r-g-rg.b (In-chroma), a'-b', mod-rgb, PIPz and 
RIR2R3 spaces. Hence, the discrimination capabilities 
between skin pixels and non-skin pixels are highest in 
these spaces. The lowest discrimination is found for the 
111213 and l1'l2'l3' spaces. 

3.5 Robustness to a change of camera system 
The robustness to a change of camera system can be 

measured as the change in the KLD, in the HIN and the 
global shift S of the distribution. As seen from Table 8, 
the change in the KLD is lowest for the r-g, CIE-xy, C2- 
C3, a'-b', mod-rgb and PIP2 spaces, while the overlap of 
the skin distributions between the two camera systems 
(HIN skin SONYISGI) is intermediate to low for those 
spaces. The highest overlap is found for the 111213, and 
11'12'13' but, as for the overlap between the three different 
skin groups, for those spaces this advantage is offset by a 
significant overlap between the skin and non-skin 
distributions, and also by very large values of the KLD for 
both cameras. The global shift S of the distribution is low 
to lowest for the above-mentioned 6 color spaces, and is 
also low for some of the spaces resulting from a linear 
transformation from RGB space. 

3.6 Robustness to changes in illumination 
conditions and computational cost of the color 
space transformation 

Finally, it is well known that a normalization of RGB 
values by (R+G+B) or of CIE-XYZ values by (X+Y+Z) 



reduces the most the sensitivity of the slun distribution to 
changes in illumination, and a linear transformation from - 
the RGB space. or a non-linear conversion into the . . 
normalized rgb coordinates and into the CIE-xyz space is 
not computationally intensive compared to that into other 
spaces. The mod-rgb space also provides a suitable 
normalization 

4. Conclusions 
In conclusion, overall, in terms of seven different 

criteria, the normalized r-g and CIE-xy chrominance 
spaces, or spaces such as the a'-b' and PIP2 spaces that are 
constructed as a linear combination of normalized r, g and 
b values, offer the best tradeoff and appear consistently to 
he the most efficient for skin color-based image - 
segmentation. In particular, the use of these normalized 
spaces obviates the necessity to apply a complex and 
computationally intensive skin chrominance model in 
order to obtain a high quality of segmentation, as is the 
case with most un-normalized spaces, in which the skin 
distribution is complex-shaped. The C2-C3 space, the mod- 
rgb space that also results from a suitable normalization, 
and to a lesser extent the RIR2R3 space, are also good 
candidates. Owing to their particular geometry, the 111213 
and 11'12'13' spaces are the least efficient for the specific 
problem of image segmentation based on skin color. 
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