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Abstract 

In this paper, we examine the results of major previous attempts to 
apply genetic and evolutionary computation (GEC) to image 
processing. In many problems, the accuracy (quality) of solutions 
obtained by GEC-based methods is better than that obtained by 
other methods such as conventional methods, neural networks 
and simulated annealing. However, the computation time required 
is satisfactory in some problems, whereas it is unsatisfactory in 
other problems. We consider the current problems of GEC-based 
methods and present the following measures to achieve still better 
performance: (1) utilizing competent GECs, (2) incorporating 
other search algorithms such as local hill climbing algorithms, (3) 
hybridizing with conventional image processing algorithms, (4) 
modeling the given problem with as smaller parameters as 
possible, and (5) using parallel processors to evaluate the fitness 
function. 

1. Introduction 

One of the main objectives of image processing is to analyze 
images provided by an imaging system and then to locate and 
recognize the object in the environment. Fig. 1 shows the 
fundamental steps in digital image processing for such purposes: 
preprocessing, edge detection and segmentation; representation 
and description of pattem shape and feature extraction; pattern 
matching, recognition and interpretation. In order to perform such 
processing automatically, the prior knowledge in the knowledge 
base is used. Alternatively, the prior knowledge can be acquired 
by iterative learning based on the existing data. In these areas of 
image processing, there are many problems whose optimum 
solutions need to be searched efficiently in complex solution 
spaces. 

The genetic and evolutionary computation (GEC) is the generic 
name for genetic algorithm (GA), genetic programming (GP) that 
is the extension of GA, evolutionary strategy (ES) and 
evolutionary programming (EP). All these algorithms are 

stochastic searching processes that are inspired by the evolution of 
biological organs. Although these three paradigms have 
originated from different advocators and had peculiar 
characteristics of their own [I], at present, these paradigms have 
been merged to each other and there exist hardly clear boundaries 
to discriminate them. As for the details, readers should refer to [2], 
[3] and (41. 

The outline of the simple GA is shown in Fig. 2. The 
population comprises a group of chromosomes that are candidates 
for the solution of the given problem. Initially, the population is 
generated randomly. The fitness value of the chromosome is 
obtained by evaluating the value of the objective function (fitness 
function) to be optimized. A particular group of chromosomes 
(parents) is selected from the population based on a prescribed 
rule to generate the offspring by the defined genetic operators, 
namely, mutation and crossover. The chromosomes in the current 
population are then replaced by their offspring, based on a certain 
replacement strategy to form the population in the next generation. 
Because the selection rule has a bias toward favoring 
chromosomes with a higher fitness value, the fitness value of each 
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chromosome becomes higher by repeating such a cycle. This 
cycle is terminated when a desired criterion is reached (for 
example, a predefined maximum number of generations). If all 
goes well throughout this process of simulated evolution, the best 
chromosome in the final population becomes a highly evolved 
solution to the problem. This is the case of the canonical simple 
GA, whereas various competent GECs that show superior 
performance to the simple GA have been proposed. 

The chromosome is constructed by the parameters to be 
optimized for the given problem. As for the representation of 
chromosome, in the GA paradigm, a binarycoded string has been 
traditionally used, whereas a realcoded string is also used 
nowadays. In the EA and EP paradigms, a real-coded string has 
been traditionally used. The objective function (fitness function) is 
the one that is to be maximized or minimized in the modeling of 
the given problem. This function takes a chromosome as input 
and produces a fitness value as a measure to the chromosome's 
performance. If the user provides the fitness value interactively in 
real time, based on a cognitive skill such as recognition, the 
algorithm can evolve a solution using this ability. Such a 
paradigm is called interactive GEC. The two key factors critical to 
the success of GEC-based methods are (1) the manner in which 
the possible solution to the problem is represented by the 
chromosome and (2) the manner in which the possible solution is 
evaluated in the context of the problem domain. 

At present, besides GECs, we have various optimization 
algorithms: enumerative techniques such as branch and bound 
and dynamic programming; calculus-based techniques that uses 
the gradientdirected searching mechanism; simulated annealing 
(SA); neural networks (NNs), etc. Compared with other 
optimization techniques, GECs have the following advantages 
that allow us to model and implement easily the given problem as 
an optimization problem: (1) GECs make relatively few 

Table 1. Applications of genetic and evolul 

assumptions about the solution space; (2) GECs do not involve 
sophisticated objective functions and the constraints of the given 
problem can be easily included by describing them as penalty 
terms of the objective function; (3) the objective function does not 
need to be differentiable or continuous; (4) the interface between 
the GEC and the evaluation process involves only the passing of 
function evaluation values. On the other hand, the simple GA has 
a problem of poor scale-up behavior. That is, although the simple 
GA works well with small problems, with larger or harder 
problems, the solution times increase or the solution quality 
decreases, or both. 

Recently, GECs have gained a growing popularity and a fairly 
great number of attempts to use GECs to solve complex problems 
in various application fields, including image processing, have 
been conducted. On the other hand, some people have raised 
questions about the utility of GECs as an optimization tool in the 
real world, due to the poor performance of the simple GA. Under 
such situations, in this paper, we examine the results of major 
previous attempts to apply GECs to image processing and outline 
the way of using GECs, their effectiveness and efficiency, 
including comparisons with other methods. Additionally, we 
consider the current problems of GEC-based methods and present 
measures to achieve still better performance. 

2. Image processing using genetic and 
evolutionary computation 

2.1. Applications of genetic and evolutionary 
computation in image processing 

Major applications of genetic and evolutionary computation in 
image processing are listed in Table 1. 

!ionary computation in image processing 

Investigators Year Description + Preprocessing 
Pall [5] 1994 Automatic selection of an image enhancement operator using GA. Chromosome: a binary-coded string that 

represents the 12 parameter values of a generalized enhancement function. + Edge detection 
Bhandarkar [6] 1994 A GA-based optimization method to choose a minimum cost edge configuration. Chromosome: a binary- 

coded 2D array that represents pixels. 
Harris [7] 1996 A GP technique to produce high-performance edge detectors for 1D signals and image profiles. + Geometric primitive and shape detection 
Lutton [8] 1995 A GA technique to detect several geometric primitives in the same run using the sharing technique 191. 

Chromosome: parameters representing the shape of primitives. 
Kawanishi [lo] 1995 A GA technique to detect plural kinds of shapes by interpreting differently each chromosome. 

Chromosome: parameters representing the shape of primitives. 
Chakraborty [ l l ]  1998 A GA in combination with the randomized Hough transform to deal with complex noisy images. 
Yin [12] 1999 Detection of a circle and ellipse using a hybrid scheme that consists of a GA phase and a local search phase. 

Chromosome: parameters representing the shape of primitives. 
Ser [l3] 1999 Hough transform that makes use of GA whose fitness function is derived based on the analysis of peak 

formation in the 4D generalized Hough transform's parameter space. + Image segmentation 
Bhanu [14] 1995 A GA-based system to learn adaptively the optimum values of the 14 control parameters of the Phoenix 

segmentation algorithm. 
Chun [15] 1996 A GA technique to maximize the quality of segmented regions generated by a split-and-merge process. 

Chromosome: integers that represent region numbers obtained by the split-and-merge process. 



Investigators Year Description 
Bhandarkar [16] 1999 A hybrid algorithm that combines GAs and stochastic annealing algorithms such as simulated annealing. 

Chromosome: a 2D array that represents the region number of each pixel. 
Cagnoni [17] 1999 A method for evolving adaptive procedures to optimize the of the contour detector using GA. + Shape representation 
Huang [18] 1999 A polygon approximation method based on GA. Chromosome: a b ina ryded  string whose bit represents 

a point on the objective curve. + Feature selection 
Siedlecki [19] 1989 A GA technique to find the optimal subset of features from a larger set of possible features. The fitness 

function includes the number of dimensions to be selected and the error rate of classification. 
Vafaie [20] 1992 A GA technique to find the optimal subset of features From a larger set of possible features. The fitness 

values are calculated by recognition rates with the AQ15 classification inducer. 
Kuncheva [21] 1997 A GA technique to find the optimal subset of features From a larger set of possible features. 
Yamany [22] 1997 A method that combines GA-based feature selection procedure and a neural network classifier. The fitness 

function includes a penalized term accounting for the cardinality of the reference set. 
Kelly [23] 1991 A GA-based method for transforming data to increase the accuracy of a k-nearest neighbor algorithm. 

Chromosome: real number for rotation angles of the data set member and scaling factors for each attribute. + Clustering and classification 
Srikanth [24] 1995 A GA-based classification method in which the class boundary is approximated by a set of fuzzy ellipsoids. 

Chromosome: a binary-coded string of variable-length to represent multiple ellipsoids. 
Sarkar [25] 1997 An EP-based clustering algorithm that groups a given set of data into an optimum number of clusters. A 

structural mutation operator for adding and deleting clusters is employed to find the optimum cluster number. 
Pal [26] 1998 A GA-based method of finding decision boundaries that are approximated by piecewise linear segments 

generated From a set of hyperplanes. Chromosome: parameter values representing hyperplanes. 
Bandyopadhyay 1998 An extended method of Pal's one [26] using a variable-length string GA to determine automatically the 
[271 optimum number of hyperplanes. 
Ishibuchi [28] 1995 A GA-based method for selecting an optimum set of fuzzy if-then rules to construct a compact fuzzy 

classification system with high classification power. 
Iwata [29] 1996 A GA-based pattern recognition system using evolvable hardware that can change its own structure. 

Chromosome: variable -length binary bit string to represent the architecture of a programmable logic device. + Model-based object recognition and interpretation 
Hill [30] 1992 An application of GA to the model-based image interpretation. As an example, the boundary of the left 

ventricular of a heart is located using a flexible template with six shape parameters. 
Toet [3 11 1995 A model-based matching scheme based on GAs. The size and shape of the model contour representing 2D 

image shapes adapt to local image evidence. Chromosome: the parameter values of the model. 
Yokoo [32] 1996 A GA-based method that can detect human facial regions. The facial region is approximated by an ellipse. 

Plural facial regions can be detected in the same run. Chromosome: five parameter values for an ellipse. 
Bang [33] 1997 A scheme for matching and recognizing broken object boundaries. The best alignment between the model 

that are transformed by the affine transform and the object shapes is estimated using GA. 
Ozcan [34] 1997 A method for shape recognition in which GA is applied to the partial matching. Model shapes are described 

in terms of features such as line segments and angles using attribute strings. 
Undrill [35] 1997 An application of the GA to the model-based anatomical object recognition using a flexible template. A 3D 

Fourier descriptor is used to represent the model shape. 
Fisher [36] 1999 A application of ES for the registration between the 3D surface model and the scene in a system for 

recognizing and locating rigid 3D objects. 
Mignotte [37] 2000 A statistical model-based method using a hybrid GA to classify shadow shapes of man-made objects in 

sonar imagery. A steepest ascent technique for local search and a cooling temperature schedule is employed. + Interpretation on the basis of the prior knowledge 
Ankenbrandt 1990 A method for labeling complex scenes via GA. A scene is modeled by the semantic net that consists of 
[381 classification categories and relationships expressed as fuzzy truth functions between categories. 
Meyer [39] 1997 An application of a simple GA to the line labeling problem in the scene that is cast into optimization 

framework. + Applications to the learning process for object recognition 
Caldwell[40] 1991 An iterative GA to evolve the composite of a criminal suspect. The selection is performed by having a 

witness view the generated twenty faces and rate each one according to its resemblance to a culprit. 
Katz [41] 1994 A GA-based adaptive system for detecting targets in image data based on a statistical classifier. The filters to 

extract feature vectors are generated through the learning process using GA. 



Investigators Year Description 
Rizki 1421 1994 An adaptive pattern recognition system. that evolves cooperative sets of feature detectors and combines 
Rizki 1431 1995 their response. GA and EP are employed to determine optimum morphological operators for the detectors. 
Soodamani [44] 1998 A machine vision system in which a GA-based learning paradigm is incorporated in the feedback path that 

connects the output recognition performance to the input stage. 
Automatic program generation by GP 

'I'ackett [45] 1993 An automatic target recognition system in which GP is used to construct classifiers that process the feature 
vectors produced by an existing algorithm. The simulations were performed using large volumes of real data. 

Andre [46] 1994 A GP-based approach to evolve a program for recognizing noisy multi-font and multi-size characters using 
decision rule sets. Handcoded rule sets can be upgraded by including them into the initial population. 

Johnson [47] 1995 An application of GP to the evolution of visual routines for simple tasks for machine vision. 
Poli [48] 1996 A GP-based approach to develop efficient optimal image filters that can perform image enhancement, feature 

detection and image segmentation. The experiments were performed using two kinds of medical images. 
Daida [49] 1996 A GP paradigm to discover algorithms that can extract and classify pressure-ridge features from images of 

arctic sea ice. The GP is used as a scaffold to support image analysts within the cycle of hypothesis-test. 

2.2. Summary of the results 

According to the results that are reported in the literatures 
mentioned above, as for the solution accuracy (quality), the GEC- 
based optimization methods are promising for practical use. The 
resulk of comparison with other methods reported in the 
literatures are summarized in Table 2. We should note the 
following three respects. (1) For problems that are tractable with 
conventional method, the solution accuracy (quality) of the GEC- 
based methods is significantly better than that of conventional 
methods. (2) For many problems that are intractable with 
conventional methods, excellent results are also obtained by the 
GEC-based methods. For example, Ser's method [13] can detect 
occluded objects that cannot be detected by the standard 
generalized Hough transform. Also with the Johnson's GP-based 
method [47], the evolved program shows better performance than 
the best algorithm written by hand. (3) In most cases, the GEC- 
based methods outperform nonconventional methods such as 
NNs and SA, whereas a competent SA outperforms the simple 
GA as shown in Ianni's paper [50]. 

Although the computation time required is not always reported 
in the literatures, we should note the following descriptions: (1) it 
is, if anything, satisfactory: Yin [lo], Cagnoni [17], Huang [18], 
Toet [30], Tsang [32] and Mignotte [37]; and (2) it is, if anything, 
unsatisfactory: Ser [13], Chun 11.51 and Fischer [34]. When 
compared with other methods, (1) it is shorter than other methods: 
branch and bound algorithm in Siedlecki [19], gradient-based 
algorithm and SA in Mignotte [37], NN in Tackett [45] and local 
search in Whitley [52]; (2) it is almost the same as other methods: 
SA in Hill [35]; and (3) it is longer than other methods: local 
search in Bhandarker [6], generalized Hough transform in Ser 
[13] and SA in Ianni [50]. In general, harder and more complex 
problems require more computation time. Also, the computation 
time required is not predictable because of the stochastic nature of 
GECs. Especially, GP-based methods require tremendously much 
computation time at the training stage. Therefore, when we use 
GEC-based methods for practical use, we must devise techniques 
to reduce the computation time. 

Katz [41] compared the GA-based approach with the 
conventional approach in the filter design and revealed that the 
strength of the GA-based approach is development time: the GA- 

Table 2. Comparison of accuracy (quality) and 
evaluation (+ : GEC is superior, * : almost 
the same, - : GEC is inferior). 

Processing I Compared method and evaluation - I [~efirence] 
Edge I Local search +, SA * 161 ; 
detection I Canny's method + 171; SA + 1301 
Shape I FCQS + 1101; Generalized Hough - 

detection transform + [13], Hough 

I Split and merge + 1'1.51 
Polygonal I Traditional methods + [18] 

selection bound + [19]; Sequential 
backward selection + [20]; 

I K-means algorithm +-[25] - 
Classification I NN + 1241; Bayes classifier *, 

based system required only a few hours to develop, whereas the 
conventional approach took months. 

Target 
recognition 

Object 
recognition 

3. Measures to achieve still better performance 

k-nearest neighbors +, NN + 1261 
Principal component method * 
[41]; Binary tree classifier +, 
NN + 1451 
Gradient-based algorithm +, SA 
+ [37]; Conventional method + 
[401; Human + 1471; NN + 1481 

Considering the results of the previous research, in order to 
achieve still better performance, we shodd take the following 
measures. 
(1) It is widely known that for some complex problems, the 

simple GA often exhibits poor performance, especial1 y lower 
performance than conventional local search algorithms, as 
shown in Bhandarkar's [6], Myers's [39] and Miller's [51] 



papers. Various competent GAS that show better 
performance than the simple GA have been proposed: for 
example, IGA [6], messy GAS [52], Genitor [53], CHC [54], 
DCGA[55], etc. Therefore, in order to obtain still better 
solutions, we should employ one of them. 

(2) It is well known that the incorporation of other search 
algorithm into a GA is very effective to improve the 
performance (convergence speed, stability and reliability) of 
the G k  For example, for multiple fault diagnosis problems, 
Miller [51] performed extensive experiments on hybrid GAS 
in which local improvement operators are incorporated and 
indicated that such hybrid GAS can find optimal solutions in 
most cases. Also, Bhandarkar [16] showed that the hybrid 
algorithm that combines GAS with stochastic annealing 
algorithms exhibits superior performance as compared with 
the simple GA. Also, Ozcan [33] incorporated a problem- 
specific hill climbing algorithm into the GA. Mignotte [37] 
incorporated a steepest ascent algorithm into the GA. 
Therefore, in order to obtain still better solutions, we should 
devise such hybrid GECs according to the given problem. 

(3) Considering the h-adeoff between the solution accuracy 
(quality) and the computation time, the hybrid of GECs and 
conventional image processing algorithms is a good 
cornpromise to achieve relatively better performance, as 
shown in Yin's [lo], Bhanu's [14] and Chun's [15] papers. 

(4) When the dimension of parameters to be optimized becomes 
larger, the optimization becomes much harder and more 
computation cost, especially computation time is required. 
Therefore, we should model the given problem as an 
optimization problem with as smaller parameters as possible. 
In this sense, it is problematic to use a 2D-array of attribute 
values of each pixel in the image as the chromosome. We 
must develop a new method for image coding to adapt the 
GEC structure to current technology limitations or develop a 
method for implementation with hardware architectures, as 
shown in [29]. 

(5) The computation time scales as N*M, where N is the size of 
the population and M is the number of generations required 
to obtain the solution. We can reduce M by employing 
competent GECs and hybrid GECs. Because the evaluation 
of fitness function makes up the most part of the total 
computation time, we can reduce the factor N by calculating 
the fitness values in parallel. For example, Punch [56] 
showed that the computation time can be reduced in inverse 
proportion to the number of the processors used. Therefore, 
in order to use GEC-based systems for practical use, we 
should implement them using parallel processors. 

(6) Usually, GP-based methods are implemented in LISP, 
whereas Tackett [45] and Daida [49] showed that the version 
implemented in C runs about an order of magnitude faster 
than the LISP version. Implementing GP-based methods in 
C allows us to use them for practical use. 

4. Conclusions 

We have seen that in many problems, the accuracy (quality) of 
solutions obtained by GEC-based optimization methods is better 
than that obtained by other methods such as conventional 

methods, NNs and SA. However, the computation time required 
is satisfactory in some problems, wherea. it is unsatisfactory in 
other problems. In general, obtaining solutions with higher 
accuracy (quality) requires more computation time. Therefore, we 
should select the method that we use from conventional methods 
(if available), GEC-based methods and their hybrid methods, 
considering the tradeoff between the solution accuracy (quality) 
and the computation time. We emphasize that although there is 
room to compare with SA and NNs, if we devise techniques to 
reduce the computation time, GEC-based methods have a major 
role to play in many problems. We feel that if we implement 
GEC-based methods, employing the measures mentioned above, 
they allow us to realize efficient and robust systems for optimizing 
image processing. 
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