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Abstract 
We design an optimal grid pattern such that an observed 
image of a small portion of it can be matched to its 
corresponding position in the pattern easily. The grid 
shape is so determined that the cross ratio of adjacent 
intervals is different everywhere. The cross ratios are 
generated by an optimal Markov process that maximizes 
the accuracy of matching. Finally, we show a virtual 
studio application of our pattern. 

1. Introduction 

Camera calibration is a first step in all vision and 
media applications. The standard method for cali- 
bration is to place a planar grid pattern of a known 
geometry and compute the camera parameters by 
observing its images [5, 6, 71. For this computation, 
we must match observed grid points to their posi- 
tions in the original pattern. 

This paper presents a method for automating this 
process by designing a grid pattern in such a way 
that the cross ratio of adjacent intervals is differ- 
ent everywhere. Since the cross ratio is invariant to 
perspective projection, observed grid points can be 
matched to their corresponding positions easily by 
comparing the cross ratios. 

We then optimize the grid shape so that the ac- 
curacy of matching is maximized in the presence of 
noise. Introducing a statistical model of image noise, 
we generate the grid intervals by an optimal Markov 
process. Finally, we show a virtual studio applica- 
tion [I] of our pattern. 

2. Cross Ratio 

The cross ratio can be defined in many different 
ways [3]. Here, we define the cross ratio T, of four 
numbers {xi-1, xi, xi+l, xi+2) by 

where we have defined the ith interval width li by . 
li = X,+l - xi. (2) 
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Our task is to generate a sequence {xi) in such a 
way that we can easily find the number i for which 
{xi-l, xi, xi+l, xi+2) have a specified cross ratio ri. 

Since intervals of very small separation cannot 
be discerned in the camera image, the ratio of the 
minimum width 1,;" to the average interval width lo 
must be specified. We assume that it is input by the 
user. Since the absolute scale of the pattern does 
not have any meaning because we analyze camera 
images of the pattern, we can normalize the average 
interval width lo to  be 1 without losing generality. 

Our strategy here is to  generate not the sequence 
{xi) directly but the sequence {ri) of cross ratios 
by a stochastic process. The sequence {xi) is eas- 
ily determined once the cross ratio sequence {T,) is 
given. Suppose we have already generated {xo, ..., 
xi, xi+l).  If T, is given, the next number xi+2 is 
determined from eq. (1) in the form 

where we have defined the ith adjacency ratio y, by 

Let pl,,,, (T) be the probability density of the cross 
ratio T conditioned on 1, and y; defined over a do- 
main [ T ~ ; , T ~ ~ ] .  From eq. (3), the condition that the 
expected length of xi+z - xi+l be I is written as 

3. Error Analysis 

Suppose xi-1 , xi, xi+l, and xi+2 have errors 
 AX^-^, Axi,  AX^+^, and respectively. The 
errors in the intervals li-l, li, and Ii+l are 

It  follows from eq. (1) that the cross ratio ri has the 
following error to a first approximation: 



If the noise is an independent Gaussian variable of 
mean 0 and standard deviation o, the variance of 
Ari is 

where 

T?(li-l/Zi + 2 + li+l/ii) 1 - = -  - 
dl; I i i  i li ' 

Hence, the standard deviation of ri has the 
following expression: 

4. Optimal Conditional Probability 

If 1; and y, are given, the standard deviation 
is a function of T,. It follows that the match- 

ing error is minimized if we generate the cross ratio 
T densely in the domain over which the standard 
deviation is small and sparsely in the domain over 
which it is large. This means that we should define 
the probability density pl,,(r) conditioned on I and 
y to be inversely proportional to s,(T), i.e., 

Figure 1: (a) A random sequence. (b) An optimal 
sequence. (c) An optimal sequence with buffer zones. 

Figure 2: The error ratio of matching. 1.  Random 
sequence. 2. Optimal sequence. 3. Optimal sequence 
with buffer zones. 

It follows that if we define 

the upper bound r b  of the domain [ra,rb] is deter- 
mined for a given lower bound T, as the solution of 
the equation fl,,(x) = 0. It has two solutions, one 
of which is ra itself. We denote the other solution 
by ~ t , y ( ~ a ) .  

5. Optimal Sequence 

Measurement error in one position affects two 
consecutive interval widths, three consecutive adja- 
cency ratios, and four consecutive cross ratios. It fol- 
lows that the desired distribution of the cross ratio 
T depends on the interval width 1 and the adjacency 
ratio y defined by the preceding positions. Hence, 
the resulting sequence {xi) is a Markov process. 

Given xo, ..., xi, x,+l, we generate the ith cross 
ratio T, according to the conditional probability (11) 
over the domain [ T ~ , ,  T&], which is determined from 
eqs. (1) and (13) in the form 

where Cl,, is the normalization constant. From the 
1 

Ta, = Tbi = ~1,,y, (rai). (15) 
normalization condition ST. plVy ( T ) ~ T  = 1, we obtain (1 + k/lmin)(l+ yi) ' 

Recall that 76, is the solution of fi,,,,(x) = 0 such 

(12) that x # T,,. The integral in eq. (14) can be numer- 
ically evaluated (say, by the trapezoidal rule), and 

Substituting eqs. (11) and (12) into eq. ( 5 ) ,  we ob- the solution can be obtained by a numerical scheme 

tain (e.g., Newton iterations). Then, ~ i + 2  is computed 
by eq. (3), and we repeat this procedure. Let us call 

1 + 1 Tb ((1 + T)T - 1/(1 + I!) d~ -- the resulting sequence {xi) the optimal sequence for la 1 - (1 y )  S T )  - (I3) short. 



Figure 3: An optimal grid pattern (checkerboard type). 

Even if the probability distribution of the cross 
ratio is optimally defined, the resulting sequence 
may still contain values that are very close to each 
other as long as the generation is stochastic. This 
causes deterioration of the matching capability in 
the presence of image noise. So, we introduce a con- 
straint that no two cross ratios be very close to each 
other. 

If the standard deviation of the noise in {xi) is o ,  
the standard deviation sl,,(r) of T conditioned on 1 
and y is given from eqs. (10) in the form 

Each time we generate a cross ratio T, we define 
buffer zones of width S~,,(T) on both sides of T 

and forbid subsequent cross ratios to occur in those 
zones. 

For comparison, we generate the ith interval li in- 
dependently and uniformly over a domain [Imin, l,,,] 
centered at 1 (i.e., l,,, = 2- lmin) and define  xi+^ = 
xi +li. Let us call the resulting independent additive 
process {xi) the random sequence for short. 

Figs. l (a )  and (b) show an instance of the random 
sequence and the optimal sequence, respectively, for 
lmin = 114. Fig. l(c) is an instance of the optimal 
sequence with buffer zones, where a is set to 1% of 
the average interval width. We added independent 
Gaussian noise of mean 0 and standard deviation &% 
of the average interval width to each position and 
computed the cross ratios of all four consecutive po- 
sitions. Each position is matched with the position 
that has the closest cross ratio. Using different noise 
each time, we repeated this 100 times and plotted 
the average error ratio for e in Fig. 2. 

Figure 4: An optimal grid pattern (framework type). 

Figure 5: The error ratio of matching. 1. The sim- 
ple method. 2. Maximum likelihood estimation with- 
out using coloring information. 3. Maximum likelihood 
estimation using checkerboard coloring information. 4. 
Maximum likelihood estimation using framework color- 
ing information. 

for the convenience of image processing (chromakey 
application). 

In order to  compute the cross ratios in both direc- 
tions, we need to observe a t  least a 3 x 3 block, from 
which the cross ratios are computed in four ways. 
Let 7, and 7, be the averages of the four values for 
the x and y directions, respectively. The absolute 
position of that block in the pattern is determined 
by finding integers i and j such that 17, - T,(~ ,  1 and 
lry - ry(j)l are minimized, where {T,(~)) and {rY(,)) 
are the cross ratio sequences associated with {xi) 
and {yj ), respectively. 

However, this process does not take into account 
the error behavior of the cross ratio. Since the stan- 
dard deviation of the cross ratio can be evaluated by 
eqs. ( lo) ,  a statistically optimal method is the maxi- 
mum likelihood estimation: we minimize the squared 
Mahalanobis distance 

- - 
6. Optimal Grid Pattern J ( i ,  j )  = z - i 1 ITY - T Y ( ~ )  I 2  + 

3-rZ(,) (rZ(i)l2 Sr,(,, (7y(j) I2 7 (17) 
Generating two sequences {xi) and {yj) indepen- 

dently, we can define a grid Pattern with vertices where {l,(i)) and {ly(j)) are the interval sequences 
{(xi, yj)). Fig. 3 shows one example for 1min = 113 defined from {xi) and {yj), and {y,(;)) and {yY(j)) 
with o set to 1% of the average interval. It is painted are the similarly defined adjacency ratio sequences. 
like a checkerboard with dark and light blue colors For a checkerboard pattern, a 3 x 3 block has two 



(a) (b) (c) 

Figure 6: (a) Original image. (b) Estimated camera position and its reliability. (c) A virtual scene generated from 
(a). 

possibilities for its coloring. This information can 
be used to  reduce the search space for minimizing 
eq. (17). Another possibility for coloring the pat- 
tern is to alternate colors for neighboring rows and 
columns (Fig. 4). Let us call it a framework pat- 
tern.  It has four possibilities for coloring a 3 x 3 
block, reducing the search space to a half that for 
the checkerboard pattern. 

7. Simulation 

We added Gaussian random noise of mean 0 and 
standard deviation e% of the average interval width 
to the coordinates of each grid point of the pattern 
shown in Figs. 3 and 4. The positions of all 3 x 3 
blocks are computed from the observed cross ratios, 
and this process was repeated 100 times using dif- 
ferent noise each time. Fig. 5 plots the average error 
ratio for c. Here, we compared the following four 
methods: 

1. The simple method: 17, - T,(~) I and lry - ry ( j )  I 
are minimized. 

2. Maximum likelihood estimation: eq. (17) is 
minimized. 

3. Maximum likelihood estimation combined 
with checkerboard coloring information. 

4. Maximum likelihood estimation combined 
with framework coloring information. 

We can see that maximum likelihood estimation 
slightly reduces the matching error as compared 
with the simple method. In contrast, the coloring 
information dramatically improves the accuracy and 
that the framework pattern is more effective than 
the checkerboard pattern. 

8. Virtual Studio Application 

Fig. 6(a) is a real image of a toy, behind which 
we placed our optimal grid pattern. After segrnent- 
ing the toy image from the background by using a 
chromakey technique, we computed the 3-D posi- 
tion and focal length of the camera by observing an 
unoccluded portion of the grid pattern [2, 41. The 
focal length is estimated to be 576 pixels. The stan- 
dard deviations of the focal length, the translation, 

and the rotation are evaluated to be f38.3 pixels, 
f 5.73cm, and f 0.812", respectively. 

Fig. 6(b) is the top view of the estimated cam- 
era position and its uncertainty ellipsoid (three 
times the standard deviation in each orientation). 
Fig. 6(c) is a composition of the toy image and a 
graphics scene generated by VRML. 

8. Concluding Remarks 

We have designed an optimal grid pattern such 
that an observed image of a small portion of it can be 
matched to its corresponding position in the pattern 
easily. The grid shape is so determined that the cross 
ratio of adjacent intervals is different everywhere. 
By statistical analysis of image noise, we have gen- 
erated the cross ratios by an optimal Markov process 
that maximizes the accuracy of matching. 
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