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Abstract 

Within a human motion analysis system, body 
parts are modeled by simple virtual 3D rigid objects. 
Its position and orientation parameters a t  frame t+  1 
are estimated based on the parameters a t  frame t 
and the image intensity variation from frame t to 
t + 1, under kinematic constraints. An optimiza- 
tion procedure calculates the 3D parameters that 
make a goal function that measures the intensity 
change minimum. The goal function is robust, so 
that outliers located especially near the virtual ob- 
ject projection borders have less effect on the esti- 
mation. Since the object's parameters are relative 
to the reference system, they are the same from dif- 
ferent cameras, so more cameras are easily added, 
increasing the constraints over the same number of 
variables. A successful experiment is presented for 
an arm motion of three parts seen from two cameras. 
Keywords: Human motion, robust estimation, 
twist. 

1 Introduction 

Despite the great amount of work done in the 
area, e.g., [9, 6, 4, 71, [2, 5, 11, human motion anal- 
ysis is still a challenging topic. Bregler and Ma- 
lik [4] built a system able to track human motion 
with great precision, even for Muybridge's photo- 
graph sequences. They defined a 3D virtual model 
of the subject and a goal function over body part 
position parameters that measures the changes in 
image intensities. Using the twist representation for 
rigid transformations and the flow constraint equa- 
tion, they managed to make the goal function lineal 
in the parameter variables. They could therefore 
apply an iteration of linear optimization techniques 
and a warping routine to  obtain a very reliable pro- 
cedure for 3D position estimation. Our system is 
a modification of this one. The differences are the 
following: First, our goal function is robust, so that 
no EM procedure is needed afterwards; instead our 
optimization directly performs a robust parameter 
estimation. Second, we do not use the flow con- 
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straint equation but direct difference of pixel inten- 
sity, thus fewer assumptions, such as small motion 
and constant intensity, are assumed and no warping 
procedure is needed; due to  these two previous dif- 
ferences, we cannot apply a linear optimization tech- 
nique as we will explain below. Third, our parame- 
ters are reference-based instead of camera-based, so 
additional cameras do not increase the number of 
variables to be estimated. Our system is not a fin- 
ished product and therefore its performance cannot 
be compared to  Bregler and Malik's, but we will try 
to convey why we think this project is promising. 

The Cardboard People system [7] performs robust 
estimation of motion parameters for 2D regions. As- 
suming the flow constraint equation and a model for 
the motion of each patch, motion parameters are 
robustly estimated using a non-linear optimization 
procedure. We can say that our system is roughly a 
3D version of Cardboard People. 

All these systems and ours as well assume that 
a virtual humanoid that matches the real subject 
in size and initial position can be defined by other 
means in practice, by user interaction. 

2 Problem Formulation 

Given the film I (x ,  y, t ) ,  let us take Io(x, y) = 
I(x,  y, to) and I(x,  y) = I (x ,  y, to + I ) ,  two consecu- 
tive frames. 

The virtual model of a body part is an ellipsoid of 
appropriate dimensions. Virtual cameras of the real 
cameras are defined by a camera calibration rou- 
tine. Assume that the 3D pose (position and ori- 
entation) of the ellipsoid a t  time to is known. The 
problem is to find the change in the 3D pose of the 
ellipsoid so that the motion coincides with the real 
irnage'motion. Let 4 be the pose transformation of 
the ellipsoid from t t o  t + 1; 4 is defined by 6 real 
parameters that will be discussed in detail later. 

Let (X,Y) be apixel, and (uZ(x,y,4),u,(s;y,4)),  
its displacement vector when a 3D point that is pro- 
jected onto the camera pixel moves according to 4 .  
The goal functional E is the brightness change sum 
over the point projections before artd after the pose 
transformation. 

We define the functional E(4)  by 



where 4 E R6 are the 3-D motion parameters, 
Io(x, y) is the image brightness (intensity) function 
for the initial frame, I (x ,  y) is the image brightness 
function for the final frame, u,(q5),uy(4)) are the 
horizontal and vertical components of the flow image 
at  the point (x, y), which is the projection from R3 
of the motion associated with the parameters 4; R 
is the patch to consider, in this case, the projection 
of the virtual ellipsoid that models that tracked part 
and, finally, p is the function that reduces the influ- 
ence of some outlying measurements of the bright- 
ness difference and allows an estimation of the dom- 
inant parameters; there are other pfunctions that 
can be considered as well to  obtain a different ro- 
bust estimation. In the rest of this paper, we will 
use the one above. 

To minimize the functional (I) ,  we use a continua- 
tion method, the same used by [3]. It is the following 
iterative scheme: 

where Tdi is an upper bound on the second partial 

derivative of E : T, > , V4. 1 8 2 E I  
We do not know how to precisely calculate the 

upper bound T,,. We decided to sample e ( 4 )  
for approximately 4000 values of 4 through several 
images. Experimentally, the result of this sampling 
allows us to get correct upper bounds on the value 
of the second derivatives, for all the tests we have 
done. 

The objective is to minimize E relative to 4, for 
which a precise definition of (u,, u,) and its gradient 
is needed. 

3 Motion Projection 

The object pose relative to the reference frame 
can be represented as a rigid body transformation 
in R3 using homogeneous coordinates: 

where qo = (xo, yo, zo, l ) T  is a point in the object 
frame and q, = (x,, y,, z,, l ) T  is the corresponding 
point in the reference frame. q, = (x,, y,, z,, l ) T  
is the corresponding point in the camera frame: 
q, = Mc.qc, where Mc is the transformation matrix 
associated with the camera frame. 

Using orthographic projection with scale s ,  the 
point q, in the reference frame gets projected onto 
the image point (xi,, yim)T = S. (x,, Yc)T. s is equal 
to the focal distance divided by the distance of the 
ellipsoid center to the camera, which happens to be 
a good approximation for all the points on the ellip- 
soid. 

It can be shown ([8]) that for any arbi- 
trary G E SE(3), there exists a vector J = 
(v1 ,212,213, w,, w,, w ~ ) ~ ,  called the twist representa- 
tion, with associated matrix 

such that G = e c = ~ d + i +  $ + $+.. .  
We define the pose of an object as < = 

(vl,v1,v3, w,, w,, w , ) ~ .  A point qo in the object 
frame is projected onto the image location (xi,, yim) 
with: 

The image motion of point (xi,, yi,) from time t to 
time t + 1 is: 

xim(t 1) - xim(t) 
~ i m  (t + 1) - yim (t) 

We assume that the scale change due to the motion is 
negligible from frame to frame, since the objects are 
far from the camera. Therefore s(t + 1) = s(t) = s. 
By using (2) we can write the previous expression 
as: 

with <' = ( v ~ , v ~ , v ~ , ~ ~ , w ~ , w ~ ) ~  = <(t + 1) - <(t) 

and s' = - 1. 
Assuming that the motion is small, i.e., the el- 

lipsoid center moves a few centimeters and the axis 
orientation changes a few degrees, we have I(JIII <( 1. 
We approximate the matrix ec  by Id + e. Experi- 
mentally, we confirm that the approximation is very 
good. 

We rewrite the previous expression as: 

The value of 4 is (vi, vb, vi, w:, wh, w : ) ~ ,  which are 
the optimization variables of the problem. 

Based on (3), for a pixel (x, y), we need only cal- 
culate q, to  describe the image motion in terms of 



the motion parameters 4. The 3D point q, is cal- 
culated by intersecting with the ellipsoid a ray or- 
thogonal to  the camera image pixel. To do so, we 
associate with each pixel a t  to the corresponding z, 
of the closest point on the ellipsoid surface that is 
projected onto that pixel. 

The parameters $ are independent of the camera. 
Hence, when we add more cameras, no new variables 
are needed but more constraints are added. 

4 Kinematic Chain 

The parameterization of a single body part has 
been discussed in the previous section. Assume that 
a second body part is attached to the first one in a 
point and that El (&)  and Eg(4g) are the function- 
als to be minimized if the parts were to be tracked 
independently. 

Let pl and pg be the coordinates of the shared 
- I  - 

point in the two object frames. Let & ,  6 1  ,& and 
(2' be the twist and its change for each part as in 
the previous section. In order to keep the parts at- 
tached, - the . .  following equality must be true: eG+ll' . 

( x ,  y). Using the first and second derivates of the 
image intensity a t  position (x + u,, y + uy) of frame 
t + 1, the difference of image intensities with frame 
t, accumulated for all pixels, and the kinematic con- 
straints a new pose change $, is calculated using a 
non-linear optimization procedure. The value for w 
is 0.5. For the experiments, 2500 iterations are used. 
The value of q!J that minimizes the functional within 
all the iterations is used to calcula.te the t + 1 pose. 
The procedure starts again for the next frame. 

The value for a is set as follows. Grey levels 
within the arm vary a maximum of 20% of the max- 
imum variation of intensity Max*,  i.e., between the 
values for black and white. This means that varia- 
tions above this value should be considered outliers. 
Since above a/& the influence of outliers first be- 
gins to  decrease [3], we take u = f i  x 0.2Maxr. 
Larger values produce worse solutions, which implies 
that non-robust estimators could perform poorly 
and shows that the use of a pfunction creates great 
estimation stability. No cooling schedule for a as in 
[7] was implemented, but there is some evidence that 
our system might benefit from one. 

pl = eE;+&' p z  If the point was shared a t  frame t, 6 Experiments 
it is true that eel . pl = eel . p2 = p, where p, are 
the coordinates of the joint in the reference system. - ,  
Hence, the constraint simplifies to eG1 . p ,  = ee2 * p r  
and using again the first order approximation of the 
exponential function, it leads to  fll . p ,  = fgl, which 
corresponds to three linear equations that allow us 
to  eliminate three variables. In short, each part pose 
is described by 3 variables except the first one that 
needs six variables. 

The technique generalizes to  n parts although the 
number of variables is 3n. 

5 Implementation 

Using the camera calibration, the user sets the 
ellipsoid poses a t  time 0 so that its projections co- 
incide with the three real body parts to be tracked 
in each view. This is done by calculating the best 
3D coordinates for the image positions such as the 
wrist and the elbow. The three axis are found and 
used to define the ellipsoids. The initial object trans- 
formation matrix is calculated with the Rodrigues 
fomnula[8]. The shape parameters of each part are 
also set manually for the whole film. 

The system then tracks each virtual part in 3D: 
a t  frame t,  for each pixel in the image range, it calcu- 
lates the 3D position of a point on the ellipsoid that 
is projected onto the pixel. Frame t + l  is then loaded 
and its first and second spatial derivatives are calcu- 
lated. An iterative procedure begins that initializes 
40 = 0. At iteration n ,  the (u,v) displacement is 
estimated using the pose change for each pixel 

A human subject was videotaped from two syn- 
chronized black and white cameras. An arm was 
selected for tracking because of its large motion and 
the visibility of three articulated parts. Arm ar- 
ticulation points were manually marked a t  the first 
frame from each view, so that the ellipsoid's center 
3D coordinates and orientation of its main axis are 
defined by a rotation axis and an angle with respect 
to the reference system defined during the camera 
calibration. The frames are 640 x 480 pixels, and 
the cameras are situated between three and five me- 
ters from the subject. 

The system tracks the arm for 15 frames. Sections 
of the first 8 frames are shown in Figure 1. The 
system works reasonably well, taking approximately 
1.5 min. per frame on a Pentium I1 processor a t  
333 MHz. The non-linear local optimization pro- 
cedure may cause some problems for a general solu- 
tion, since w has been tuned for this experiment, ac- 
cording to  the upper bounds experimentally found, 
for the o used. 

Frame 0 is the first one in Figure 1. The ellipsoids 
are situated "manually" in this frame, and their pro- 
jections are displayed by the ellipse borders. The 
program starts calculating the best ellipsoid motions 
for the next frame. From frame to frame, some dis- 
placement error is made. These errors are visually 
accumulated, since the process finds the next mo- 
tion based only on the previous position, e.g., mo- 
tion calculation for frame 2 forgets about frame 0. 
Therefore, after 15 frames, the hand's position is not 



at  the real hand's, but the motion corresponds to a 
functional minimum. 

7 Conclusions and Future Work 

We have presented the theoretical framework for 
-F . B 

robust tracking of human parts based on a 3D model. 
Our experiments show that the robust estimation of L 

motion parameters works well, but more testing is 
needed. 
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Figure 1: Arm tracking. 




