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Abstract 

The existing ~iiethods to ext,ract optical flow niea- 
sure the distance t,hat. each pixel moves between a 
pair of successive image frames. I t  is however diffi- 
cult to extract accurat,e opt.ica1 flow when the nio- 
t,ion in the iniage is very large or small. In order to  
deal wit,li t.llis probleni. we propose temporally etral- 
unted optical flour, \vllicli me con1put.e by measuring 
the tinie required for each pixel to move a prede- ("1 Measuring the time (b) flow 

fined distance using t,enipo&ly consistent shift of 
each pixel in an iniage sequence capt,ured a t  a high 
frequency. Experimental results show that the 
posed method is robust and accurat,e compared to  
the typical methods. 

1 Introduction 

Optical flow is usually measured in terms of t,he 
niovenient of each pixel between a pair of successive 
iniage frames[l]-[6]. Since the dist.ance of the move 
is measured, we call t,he optical flo~v distance evalu- 
a.ted optical flo.ur. As is well known. it is difficult t.o 
extract accurate opt.ical flow when t,he niot,ion in the 
iniage is large. llTlien t.lie niot,ion is sniall, i t  is also 
difficult t.o detect accurat,e optical flom since there is 
almost no variance in t.he image, and t,lle~i the flow 
vectors are detect.ed t,o be zero. 

If me use an image sequence capt.ured at. a suffi- 
cient.ly high frequency, all t,he flow vectors will ap- 
pear t,o be almost zero. Although employment of 
such an i~iiage sequence elin1inat.e~ t,he necessity of 
computing a large flo\v vect,or['i], t.he resulting ac- 
curacy would not. be desirable since the problem of 
coniputing small flom vect.ors still remains. 

To cope wit.h the probleni of computing sniall flow 
vect.ors. Iniiya et. al. utilized the randoniized sam- 
pling and voting process of the const,ra.int equations 
of optical flom derived at, several frame int,ervals[8]. 
Although the employment of a large frame interval 
make it possible to coniput,e sniall flom vectors, i t  is 
difficult t,o select. the suitable frame interval which 
is scene dependent. 

In order to deal with the problems respecting the 
di.stan,ce a~raluated optzcal flow. we propose a novel 
nlethod to extract optical flow using an iniage se- 
quence captured at a high frequency, in which we 
niensure the tinie taken for each pixel to move a 
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Figure 1: Basic idea of T-Flour 

predefined base distance (see Figure l(a)).  In con- 
trast with distance evaluated optical floui, we call 
the extract.ed optical flow temporally evalua.ted opti-  
cal flour, or simply T-Flour. 

hilori et. al.[9] have independently applied the idea 
of measuring the time taken for each pixel to  shift 
a fixed distance to depth extraction using a camera 
moving with a constant velocity vertical to  the opti- 
cal axis. However this method with one-dimensional 
search on the epipolar line cannot be applied to  opti- 
cal flow extraction requiring two-dimensional search. 

I t  should be not.ed that T - F l o w  is not a simple 
extension of their method, and we further propose a 
technique t o  increase the robustness of optical flow 
extraction, in ~vhich we examine the reliability of an 
estimated movement of each pixel by the consistency 
as a t ra jec t .0~ .  

2 Temporally evaluated optical flow 

l i e  first measure the movement of each pixel be- 
tween a reference frame and a subsequent frame as 
a flow vector and call it an inter-frame flow (see Fig- 
ure l(b)). Then, we measure the time required for 
the magnitude of each inter-frame flom to reach the 
base distance using only reliable inter-frame flo\vs. 
and finally compute the flow vector by dividing t.he 
base distance by the nieasured time. 

In order to extract robust. optical flow, it is im- 
portant to accurately measure the tinie, which is 
realized on the basis of following t,wo features. 

1. We have only to compute the inter-frame flow 
whose magnitudes are close to  t.he base d k ~ t a n c e .  
In other words, an appropriate setting of the 
base dista.nce enables us to  eliminat,e t.he neces- 
sity of computing large or small flom vectors. 

2. The reliability of inter-frame flow is examined 
by the consistency of a tinie series of inter-frame 
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Figure 2: Procedure for each pixel 

flows based on the characteristic of an image se- 
quence captured a t  a high frequency. Namely, 
many image frames are captured within an in- 
terval short enough to approximate the motion 
of each pixel to be constant. 

2.1 Procedure of extracting T-Flow 
Initially the first image frame is set to be the ref- 

erence frame for all the pixels, and the base distance 
is set to  be a predefined value (described in section 
2.1.1). 

In each subsequent frame, the following proce- 
dures are performed for each pixel (see Figure 2). 
First, the inter-frame flow is computed between the 
reference frame and t.he current franle, and the data 
respecting the inter-frame flow are stored. Arbitrary 
method is available to compute the int,er-frame flow 
and we use one of the most conventional methods. in 
which an image subregion corresponding to an ref- 
erence subregion is searched for based on the sum 
of absolute difference (SAD). Next, the reliability of 
each inter-frame flow is examined using the stored 
data of inter-frame flows (described in section 2.1.2). 
If the inter-frame flow is reliable and its magnitude 
reaches the base distance, the t,ime required for the 
magnitude of inter-frame flow to reach the base dis- 
tance is nieasured(described in section 2.1.3), and 
the flow vectors are computed using the measured 
time(described in section 2.1.4). Furthermore the 
reference frame with respect to the concerning pixel 
is updated to be t,he current frame. 

2.1.1 Determining the base distance 

The base distance should be in a range where the 
inter-frame flows can be accurately computed and 
a time series of data respecting inter-frame flows 
can be obtained sufficiently before the magnitude 
of inter-frame flow reaches the base distance. Con- 
sidering these factors, we set it to be 2 pixel. 

2.1.2 Computing reliability 
A definition of the reliability utilizing the direc- 

tion of inter-frame flow is described in this section. 
Let s(x, y, n) denote the SAD of the inter-frame 

flow a t  a pixel, (x, y), in a image frame, n, which we 
call the mismatching score. The low nlismatching 
score signifies that the inter-frame flow is reliably 
estimated. Before the magnitude of inter-frame flow 
reaches the base distance, D, we regard the inter- 
franle flow wit,h the lowest mismatching score in the 

time series of inter-frame flows computed a t  the con- 
cerning pixel,(x, y), as the correctly estimated inter- 
frame flow v,(x, y). When the magnitude of inter- 
frame flow is close to  D, the inter-frame flow whose 
direction is close to  that of v,(x, y) is considered to 
have high reliability. 

Thus, we define an indicator, r(x, y, n), of reliabil- 
ity of the inter-frame flow, vD(x, y, n), whose mag- 
nitude is close to D as an angle between the two 
vectors vD(x, y, n)  and v,(x, y): 

If r(x, y, n)  exceed a threshold, vD(x, y, n)  is deter- 
mined to be unreliable and is not used in the follow- 
ing procedures. 

2.1.3 Measuring time 
Measuring the time is equivalent to counting the 

number of frames from the reference frame to the 
frame in which the magnitude of inter-frame flow 
reaches the base distance D. However, it is difficult 
to determine such a franle in an image sequence cap- 
tured a t  a high frequency because the magnitude of 
inter-frame flow is close to D in many frames. We 
choose the franle, k(x, y), in which the extracted 
inter-frame flow has the lowest mismatching score 
of the time series of inter-frame flows with the mag- 
nitude close to D a t  the concerning pixel (2, y): 

k(x, y) = arg min s(x, y, n), 
n n€A72(z,v) 

(2) 

where N2(x, y) represents a set of frames in which 
the magnitudes of inter-frame flow are close to D. 

2.1.4 Computing flow vectors 
The magnit.ude of a flow vector is calculated by 

dividing the base distance by the measured number 
of frames, and the direction is determined to be that 
of the inter-frame flow in the frame k(x, y). 

However, the number of frames is measured by an 
integral number of frames. In order to increase the 
accuracy of time measurement, we fit a quadratic 
curve to a set of data (n,, s(x, y, n)) (n E X2(x, y)), 
and the frame where the magnitude of int,er-frame 
flow reaches the base distance is determined to the 
one minimizing the quadratic curve. 

The direction is also determined by a pixel order 
using the SAD-based method without taking sub- 
pixel information into account. Likewise, we fit a 
quadratic curve to a set of data (d, s(d; x, y, k(x, y))), 
where d represents a direction close to that of 
vD(x, y, k(x, y)) and s(d; x, y, k(x, y))) is a SAD cal- 
culated for a direction d in the frame k ( ~ ,  y) a t  the 
concerning pixel (x, y), and the direction of inter- 
frame flow is determined to the one minimizing the 
quadratic curve. 

3 Experimental Results 
We have conducted experiments in order to 

compare the robustness and accuracy of T-Flow 
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(a) 300th frame(c~ = 5.0) (b)  Correct flow (d) Phase-based method I 

Figure 3: Synt.hesized image and extract.ed optical flow (Flow vectors in (b) and (c) are magnified 30 times.) 

Table 1: Error and density of extracted optical flow 

Method 

rnit,h t,hose of distance evaluated optical $out us- NTSC for which the typical nlethods are designed. 
ing a synt,liesized image sequence and real iniage In t,his experiment, (see the lo\ver table of Table I),  
seqnences. We have inlplenlent,ed three t,ypical the results conlput,ed with the phase-based method 
nlet,llods t.0 c011lp11t.e distnnwe elialuated optical flow, include the snlallest error for the image sequence 
which are t,l~e gradient,-b~ed nietl1od[2], t,he SAD- \\{th the small image noise. However, large flow vet- 
based niet,hod[4], and t.he phase-based nlet.hod[5]. tors. for exanmle the flow vectors in the frontal oh- 

Synthesized image sequence. The synthesized 
iniage sequence consists of real images of a can and 
those of a view of a mountain and a cit,y (see Figure 
3(a)).  The former is the front,al object, txanslating in 
the right direction and the latt.er is t,he background 
rotating around the center of image. The synthe- 
sized flow field is shown in Figure 3(b). There is 

- no nose I I  noise a = a.0 

a motion boundary between tl1; frontal object and 
the background, and t,he brightness of frontal object 
changes by 0.1% of its original brightness in each 
frame. Furthermore, we add gaussian noise with 
standard deviation of 5 and 10 to the brightness as 
an iniage noise. 

The error of flow vect.or is represented by an an- 
gle bet,ween t.he comput.ed flow vector. ( u ,  z:, St), and 
t.lie corresponding correct flow vector, (u,, v,, St), ex- 
pressed in the spatiotenipord space, where St repre- 
sent ,~ a franie int,erval[G]. The error shown in Table 
1 is t,he average of d l  t.he errors in an image. 

In t,he experinlent using the iniage sequence with 
1000 frames/sec. (see t,he upper table of Table I ) ,  
t,he errors of T-Flout are the smallest of all t.he re- 
su l t ,~  rnit,h any image noises. Note that the resu1t.s 
con~put.ed with the SAD-based method include large 
errors because t.he resolut.ion of computed flow vec- 
tors is one pixel. 

Next, we use the image sequence with 30 
frames/sec. in order to simulate t.he video rate of 

noise a = 10.0 

ject: are not ciculated (see Figure 3(d)), and more- 
over the error for the image sequence with the large 
image noise is large. 

The results shows that the proposed niethod is ca- 
pable of accurately computing both small and large 
flow vectors, and also the most, robust against the 
image noise. 

error[deg.] I density[%] 1 1  error[deg.] I density[%] 11 error[deg.] I density[%] 

56.0 
86.6 
o l.0 

30 
framelsec. 

Real image sequence. Figure 4(a) and (b) show 
real images captured a t  1000 frarneslsec. Computed 
T-Flow is shown in Figure 4(c), and the results of 
typical methods with frame rate of 30 frameslsec. 
and 1000 frames/sec. are shown in (d)-(f) and (g)- 
(i), respectively. T-Flour is apparently more accurate 
and robust than the results obtained by the typical 
methods. 

4 Conclusions 

gradient 
SAD 
phase 

In this paper, we proposed a method of extract- 
ing optical flow by measuring the time required for 
each pixel to move the predefined base distance us- 
ing an image sequence captured at a high frequency, 
inst.ead of measuring the distance that each pixel 
moves for a fixed frame interval. In this method, 
there are two advantages contributing to the robust- 
ness and the accuracy, which are (i) measuring the 
time eliminates the necessity of computing large or 
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(a) 13.5Oth frame 
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Figure 4: Extracted optical flow using a real image sequence (The original images are shown in (a) and (b), and 
the arrows shown in (b) outline motions in the image and '0's represent no mot,ion. The results shown in (d)-(f) 
and (g)-(i) are conlputed using the image sequence with 30 framesfsec. and 1000 framesfsec., respectively. The 
flow vectors shown in (c), (g)-(i) are magnified 75 times, and those of (d)-(f) are magnified 2.5 times.) 

small flow vectors and (ii) only the temporally con- 
sistent motion is used for measuring the time based 
on the analysis of a time series of data respecting 
the niovenient of each pixel. 
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