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Abstract 

We describe a method for object recognition with 
2D image queries to be identified from among a set 
of 3D models with known pose. The main target ap- 
plication is face recognition. The 3D models consist 
of both shape and color texture information, and the 
2D queries are color camera images. The kernel of 
the method consists of a lookup table that associates 
3D surface normals with expected image brightness, 
modulo albedo, for a given query. This lookup ta- 
ble is fast to compute, and is used to render images 
from the models for a sum of square difference er- 
ror measure. Using a data set of 42 face models 
and 1764 (high quality) query images under 7 poses 
and 6 lighting conditions, we achieve average recog- 
nition accuracy of about 80%, with more than 90% 
in several posellighting conditions. The method is 
extremely fast compared to those that involve find- 
ing eigenvectors or solving constrained equation sys- 
tems. 

1 Introduction 

We are interested in searching a potentially very 
large database of 3D solid models including texture 
to find a match to a 2D photographic query, under 
conditions of arbitrary illumination and pose. We 
have developed a technique to  accomplish this using 
data captured by rangefinder hardware developed by 
our collaborators at the NEC C&C Media Research 
Lab in Miyazaki-dai, Japan. This hardware[3] (an 
early version of the Fiore model) captures accurate 
shape information in registration with texture data, 
producing a 640 x 640 texture and range mesh, with 
24 bit color and less than lmm range error. 

Our technique, which we call "lightsphere", is 
based on a recognition paradigm which uses com- 
puter graphics techniques to render from the model 
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database and then make a comparison with the query 
image. In this paradigm, pose is first determined by 
some means, then based on that pose and knowledge 
of the query, an estimate is made of the appearance 
of each model under the same lighting conditions as 
the query. The model whose rendered appearance is 
estimated to  most closely match the query is deemed 
the most likely identification. 

Even when the correct pose of a 3D model is 
known, the illumination can create large differences 
between the reprojected 3D model and the query 
image, so that properly accounting for lighting vari- 
ations is a major challenge. 

In a very large database, the computational cost 
of comparing many models to  a query is critical. 
The lightsphere method has been designed to be very 
fast and is not very restrictive in the assumptions it 
makes about the albedo, the surface properties, and 
the lighting conditions. 

Lightsphere avoids solving for light sources, as 
one might do e.g. following the methods of Georghi- 
ades, Kriegman, and Belhumeur[l]. We believe this 
offers a substantial speed improvement. (In our pre- 
liminary testing, comparing with naive implementa- 
tions of light solving using nonnegative least squares 
methods, we observe a factor 10-100 speedup.) We 
envision multiple matching methods operating in a 
sifting process, so that our faster method would filter 
out the great majority of false matches, sending the 
most promising candidates to more costly processes 
for more precise analysis. 

The lightsphere method assumes that pose has al- 
ready been solved a t  a previous stage. In our present 
system, we use pose based on a solution from a small 
number of hand-extracted feature points. Given a 
query, pose must be solved for each possible model 
in the database; however this is quite fast. 

The kernel of the lightsphere algorithm is based 
on the fact that given a 2D query, a candidate 3D 
model, and a corresponding pose, we can project 
the 3D model in registration with the 2D query. Of 
course, we may be matching (or aligning) the wrong 
3D model, in which case we would expect the reg- 



istration to be poor. If one knew the lighting for 
the query, then one could render the 3D model in 
registration with the 2D query, and compute an er- 
ror measuring the similarity between the rendered 
image and the query image. 

A possible approach is that one could use the nor- 
mals and the texture from the 3D model, in conjunc- 
tion with the assumption of Lambertian reflectance, 
to compute a light source distribution that best ac- 
counts for the query, and we have also tried that 
approach; however, the lightsphere method is able 
to avoid the costly step of actually solving for the 
light sources, as follows. 

2 Lighting Model and Notation 

We assume that all light sources are at  infinity 
(i.e., isotropic lighting), so that the lighting does not 
vary from point to point on the illuminated surface 
(except for the effect of self-shadowing by attached 
shadows). We make no assumption about the type 
of surface of the object (e.g., we do not assume that 
it is Lambertian). Rather, we assume only that the 
reflected light depends on the surface normal, the in- 
coming light, and linearly on some albedo that may 
vary from point to point on the surface. 

Let: 

A be the albedo (intrinsic reflectance) function, 

N be the Gauss map of the surface, i.e., the function 
that maps each point to its normal. 

L be a function on directions in 3-space that rep- 
resents the light intensity coming from each 
direction. 

I be the observed image intensity on the surface. 

I.e., if we call the surface S ,  then 

A : S + R+, where R+ is the nonnegative real 
numbers; 

N : S + G, where G is the Gaussian sphere; 

L :  G + R+; and 

In this notation, the Lambertian model of surface 
reflectance with attached shadows can be written as 

'Notice that we are using notation where these entities 
are functions; for example, the albedo at the point p E S is 
written as A(p)  in this notation, and the light intensity from 
the direction g E G is written as L(g) .  

where is the usual vector dot product; p is a rec- 
tifier function which clamps negative values to zero, 
i.e. p(x) max(0,x); and the function I is defined 
by 

I b )  = 4 P )  / L(g)p(g*Nb)), P S 
sEG 

(eqn LP) 

3 The Lightsphere Method 

Note that eqn. Lp is of the form 

with Br, : G + R+. B can be thought of as a 
"brightness" function that depends only on L and 
N(p), which captures the interaction of the lighting 
distribution with the normal. (For a Lambertian 
surface and a point source, this is just the dot prod- 
uct.) We assume only that the reflected intensity is 
governed by a relation of the form of eqn. B; we do 
not require that the surface be Lambertian. Notice, 
however, that this does presume that the reflected 
intensity does not depend on camera position. 

In the render-compare recognition paradigm we 
are using, we are given Amodel, Nmodel, and Iquery, 
and we must compute an Irendered from the model 
to compare to the query. In addition, we know the 
pose, and therefore we can register the model with 
the query (even for a wrong model). 

Although L is unknown, we can compute the fol- 
lowing quantity from our data, by dividing eqn. B 
to give 

where we have identified points in the query with 
those in the model by using the pose information 
for registration. 

Then we can render from a model, simply by mul- 
tiplying B by the albedo AmOdel, yielding 

If we were to do this point by point on the sur- 
face, this is a triviality, and we would simply get 
back the Iquery that we started with. However, the 
true BL depends only on the normal, and only im- 
plicitly on the location (through the map Nmodel). 
This imposes a constraint on the values that BL can 
take, which we can exploit: different points with the 
same normal should have the same value of BL. We 
therefore expect this constraint to be violated much 
more severely when matching the wrong model than 
when matching the correct model. 

To get all the points with the same normal, con- 
sider the inverse of the Gauss map, N-'. Then for 



each g E G, N-'(g) is the set of surface points with 
the normal g. The constraint says that under ideal 
conditions, for the model which matches the query, 
we would compute a BL that is constant on each 
N-'(g). Of course, in the presence of noise and 
other errors this will not be exactly true, so instead 
we consider the average value of BL computed on 
each N-l(g); call this BL. I.e., 

Now we can render using 

By now using BL,  we get not a triviality, but 
a rendered image that should be faithful for the 
matching model (up to the limits of other errors), 
and poor for non-matching models. 

In order to compute BL, we tesselate the Gaus- 
sian sphere of the model into bins, and compute BL 
for each bin, simply by iterating across the query 
raster, looking up the corresponding normal and al- 
bedo from the model data, and accumulating a BL 

observed intensity obeys the relation of eqn. B, this 
is not a problem. Call the true albedo A*, and the 
true "brightness" function BE. Then the quantity 
we are using as the albedo, A, is really given by 
A = ALBEA, where BzA is the true "brightness" 
function for the lighting conditions LA under which 
A was measured. Thus, I = A . (BE/BEA ), which is 
again of the form of eqn. B, albeit with a BL that 
is not the "real" brightness function, but due to lin- 
earity, this does not affect the result of estimating 
BL and using it to render with A as albedo. 

4 Results 

for each bin.2 (This Gaussian sphere bin data struc- 
ture is the "lightsphere.") 

Rendering the model in the lighting of the query 
then simply requires a lookup of BL to insert into 
eqn. A. However, in order to compensate for the 
quantization noise, we perform a bilinear interpola- 
tion on the BL values depending on where the model 
normal vector to be rendered falls within a bin. This 
interpolated BL is what is actually used for render- 
ing. 

When we render using the average of a bin, the t 

We have tested this technique using a database of 
42 3D models of human faces and 1764 queries, un- 
der all combinations of 7 poses and 6 lighting condi- 
tions, some of which are quite extreme. We achieve 
the recognition accuracies shown in Figure 1 with 
a preliminary (untuned) version of the a l g ~ r i t h m . ~  
See Figure 2 for the distribution of correct answer 
ranks, and Figures 3 and 4 for image examples of 
the algorithm. 

pixel intensity error is a measure of how consistent 
the query and model are under the lighting that cre- 
ated the query. This can therefore be thought of a s  a 

I 
2 cheap approximation to computing the mutual infor- 0 

mation between the query and the projected model, 
a technique elaborated in [2]. 

3.1 A note about albedo estimation 

We have found that it is difficult to get accurate 
estimates of true albedo. Fortunately, the linearity 
of eqn. B provides us with a certain amount of ro- 
bustness against inaccurate albedo estimates. We 
have found it useful to  estimate albedo simply by 
applying a diffuse lighting. In the absence of cast 
shadows, the albedo can be measured as the im- 
age intensity resulting from perfectly diffuse light- 
ing. However, in practice the lighting is not per- 
fectly diffuse. Nevertheless, to the extent that the 

2 ~ l t h o u g h  we currently use a simple-minded checkerboard 
tesselation of the x-y plane, one could use vector quantization 
to optimize the bins. Although vector quantization is expen- 
sive, this can be computed offline for each model. 

lighting ----, 

Figure 1: Percent recognition accuracy as a function of 
lighting and pose of the query. Images shown are reduced 
monochrome versions of full color query images for one 
subject. The query set consists of pictures of the same 
42 individuals as used in the 3D model set. 
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Rank o l  Right Anmmr 

Figure 2: Cumulative rank curve taken over all 42 com- 
binations of pose and lighting conditions. The ordinate 
represents the fraction of the time that the correct an- 
swer was ranked at or above the value on the abscissa. 
(Rank numbering starts at 0, not at 1.) Figure 4: Example of operation of Lightsphere for 

Figure 3: Example of operation of Lightsphere for cor- 
rect match, i.e. when the model being examined is that 
of the individual in the query. From left to right: (a) 
query image; (b) 3D model texture projected for pre- 
viously found pose for this query/model pair; ( c )  one 
component of the surface normal in registration with 
the model in (b); (d) lightsphere bin contents for R,G,B 
channels, and bin counts; (e) synthetic image of model 
in (b) rendered using computed lightsphere; ( f )  error im- 
age between (a) and (e), where lighter represents higher 
error. 
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