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Abstract 

A method for three dimensional object recogni- 
tion based on depth image information is proposed. 
A depth aspect image is defined as an orientation 
standardized appearance from the original depth 
data of the object, which is transformed by the rigid 
transformation drawn by each possible basis pair 
of every three feature points of the object depth 
data. They are made from the original depth im- 
ages of models and then learned in the system as the 
database for retrieval of any instances on the mod- 
els. Matching between an object aspect and the ones 
from models can be performed by two-dimensional 
image comparison, which is based on the least quan- 
tile of residuals and is robust against occlusion possi- 
bly occurred in cluttered scene. The paper includes 
a formalization of the proposed method and some 
experimental results with real objects. 

fine resolution of partial shapes of models[8] A novel 
matching scheme is also presented, which is based on 
a robust statistic and hence model instances with oc- 
cluded part can be searched in the real scene. Depth 
aspect images are fundamental in the method and 
they are made through relative coordinates by the 
feature points on the model surfaces, enabling po- 
sition and posture estimation of the models in the 
scene. The proposed method is suitable for hardware 
realization and so fast and real time processing. 

The paper consists as follows: In Section 2, an 
outline of the method is given together with defini- 
tion of depth aspect images and the algorithm for 
generating them. In Section 3, a robust recogni- 
tion algorithm using image-based matching is given 
for handling complex scenes with multiple objects. 
In Section 4, experiments with real scenes are p r e  
sented, and then we conclude the paper with some 
remarks in Section 5. 

1 Introduction 2 Depth aspect image 

Study on recognition and estimation of three- 
dimensional posture and motion based on depth im- 
ages is one of fundamental problems in computer vi- 
sion for many applications, in the fields of robotic 
vision and factory automation. There have been 
proposed some methods for measuring depth, such 
as laser range finders [I], binocular and multinoc- 
ular stereo visions [2], factorization [3], depth from 
defocus or focus [4]. We can roughly classify these 
approaches into two categories as follows: the depth 
image based approaches and the point set based 
one. In the former approach, depth images of 
rather dense spatial data are utilized for detection 
some geometric features, such as curvature or edges 
which are used for data compression and/or geo- 
metrical coordination.[5] They are also effective, for 
example, in model-based matching, for decreasing 
computational cost, but they are strongly depen- 
dent on stability and repeatability of features and 
their extraction procedures. Otherwise, in the lat- 
ter approaches, even sparse but less position data 
can be used for merging algorithms [6] solid object 
matching[7]. 

In this paper, a model-based method is pro- 
posed for realizing robust object recognition, which 
is based on 2-D depth aspect images in a registered 
model database and handles dense depth data with 
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2.1 Outline of processing 

Fig.1 shows an outline of the proposed method. 
The method consists of the following two compo- 
nents: model registration and object recognition. In 
the model registration processing, depth images of 
models are measured by a range sensor, such as a 
laser range finder, and geometrical feature points 
are extracted from them through curvature evalu- 
ation. Local coordinate frames called 'Aspect coor- 
dinate frame', hereafter ACF, are defined to convert 
depth data to depth aspect images, hereafter DAI. 
For every model, multiple DAIS can be derived cor- 
responding each three tuple of measured points of 
the model surface, and then they are registered into 
the DAI database with the corresponding informa- 
tion of ACF, which is utilized to reconstruct the ob- 
ject position and posture in the scene. In the object 
recognition processing, a partial set of depth data 
can be converted to the DAI through the ACF con- 
sisting of the selected three tuple of feature points. 
The DAI is compared with each of possible DAI from 
the model database. The model and its position and 
posture can be obtained as solution. 

2.2 Extraction of feature points 

In this paper, depth images are measured by a 
laser range finder, hereafter LRF, with fine resolu- 
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Figure 2: Definitions of 3-tuple, ACF and DAI. 

I Result 1 points U that construct the right triangle with a 
limited range of its three angles as follows: 

Figure 1: Overview of the proposed method 

tion. For each model, let P = {pij = (xij,yij,zij)) 
be a measured point set of total point number N. 
p shows a vector. Feature points are defined based 
on their curvature features [9] which are expected to  
be independent of viewing directions and repeatable 
enough for defining ACF in the scene. The depth 
data equally arranged in x, y directions by the LRF 
used in our measurement. Peripheral points { b k } ~ ~ o  
in a 5 x 5 square neighborhood are used for calcu- 
lating eight curvatures corresponding each pair of 
points on opposite sides as follows: 

COS- ( P , , - ~ ~ ) . ( ~ ~ + . s - P , , )  
I P , , - ~ ~ I . I ~ ~ + ~ - P , , I  p,  l n  = 

where k = 0,1 , .  . . ,7.  The maximal curvature for 
each point p is defined as its feature S(p) ,  and define 
the set of points having larger feature values than a 
threshold ST as the feature point set T = {uij) = 
{pijI S(pij) > ST). 

U = { ~ = ( U ~ , U ~ , ~ ~ ) , U ~ E T , Y ( U ) = ~ )  (2) 
1 (30i - DT 5 ai 5 30i + DT 

Y(U) = ,Vi = 1,2,3) 
0 (otherwise) 

(3) 

where (1) = 1, (2) = 2, (3) = 3, (4) = 1, (5) = 2, ai 
means vertex angles a t  ul , u2, u,g, DT is a range 
width with respect to angle value. We set IUI = K 
and omit suffices like uk for components of U for 
simplicity. The threshold DT has to  satisfy a condi- 
tion DT < 15(O) so that each range of angles is not 
overlapped each other. In Equation(3), the function 
~ ( u )  determines if three angles of the tuple u are 
within the range of 30°, 60°, 90". The condition for 
the possible three tuple of feature points can limit 
the total number of ACF and it enable to discrim- 
inate three selected points for localize a coordinate 
frame on the tuple, in comparison to the case that 
any three tuple of feature points is possible as the 
candidate for ACF. 

2.3 Three tuple of feature point 
2.4 Aspect coordinate frame 

In order to do any matching, a certain reference is 
necessary for registration of positions and postures An ACF can be defined and localized on each 
of two objects on interest. Any three tuple of feature of the selected tuple under the condition above- 
points may be such reference, however, the compu- mentioned, all of which are included in U. The 
tation costs in both model registration and object xy plane of an ACF is called a base plane, here- 
recognition become enormous, so we have to  intro- after BP, which is used for mapping of depth values. 
duce some limitation to the condition as reference. Fig.2 shows the definitions of ACF and BP. The ori- 
From T, we select a set of three tuple of feature gin and the axes of ACF can be defined using three 



feature points, respectively, and they serve as a co- 
ordinate system for converting the measured depth DAI#1 DAI#2 

values with respect to  it and for making the DAI of 
the model. The DAI is defined on the BP of the 
ACF, which includes all the feature points in the tu- 
ple, by projection along the z axis of the ACF. The 
origin is US, the unit vector e, passes through it and 
'112, the unit vector e, is defined as the normal vec- 
tor of the BP, and then the last vector e, is set so 
that it is orthogonal to  e, and e,. The set of ACF D A I P ~  DAIW 

C = {C = (o,e,,e,,e,)),lCI = K , thus, is defined 
as Figure 3: Examples of ACF and DAI 

Each component of the set P is converted with re- 
spect to the ACF, resulting {P'k)f=l as follows: 

where A, is the quantization width for 2'. Bright- 
ness is of the eight-bit representation, and the pixels 
corresponding to the real depth have the brightness 
in the range of one to 255, which involves the in- 
termediate value 128 that corresponds to the pixel 
values for the points just on the BP. Fig.3 shows 
some examples made by the abovementioned proce- 
dures. The figure shows that the DAI is a visualiza- 
tion of depth structure with respect to the ACF, and 
it represents imaginary three dimensional measure- 
ment according to the three tuple of feature points 
on the object surface. The spatial resolution of DAI 
is set higher than the one of the original depth image 
to some extent, and it effects a certain smoothing. 

2.5 Depth aspect image 2.6 Model registration 

All the components of PL are converted with re- For each of models, multiple DAIS are constructed 
spect to the ACF and mapped onto the BP. As according to three tuples of feature points and then 
shown in Fig.2, an aspect grid A = {alm) with the ACFs, and they are registered as items with the fol- 
width A, and A, on the BP. lowing terms into a DAI database. 

A = {alrn)l=o,l ,..., L-1, m=o,l,...,~-l (12) model identifier:q 

PL are projected along the z axis orthogonally S(p)  threshold:ST 
onto the BP. Each pixel of the DAI can be assigned 
its virtual brightness by the following procedure. Let ACF:{e,, e,, e,) 
P 1 I l m  = {P:jj C_ PL -be the which is pro- three tuple:{ul, u2, u3)  
jected onto a grid a(,, and then the points satisfy 
the conditions as maximal side 1ength:s = 1 ~ 1  - '1121 

where (b,, by) is the offsets of the DAI origin from 
the one of the ACF. The pixel value is derived from 
the z values of P1'lm. When it includes multiple 
points, the maximal projected value is selected as 
follows: 

where 2 shows the quantized depth after conversion 
with respect to the ACF as 

3 Robust matching of DAI 

Fig.4 shows the processing flow in the object 
recognition. We call the object image of interest 
by the scene. From the scene, a DAI can be con- 
structed in the same way of the model registration, 
except for the parameter of ST which is set to the 
minimum of the values for each model. The can- 
didate ACF have to  be chosen as some likely one 
for efficient search of the object. Partial search is 
utilized for this task in terms of the maximal side 
length s for each ACF. Let sa and sm be the one 
for the scene and a model. the selected ACFs which 
satisfy the condition: sa - dL 5 sm 5 sa + dL can 
be candidates for matching processing. The param- 
eter dL can control the range of search in the DAI 
database. Candidate ACFs for the best match are 
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Figure 4: Procedure of recognition 

selected from the database in order, and the DAI 
corresponding to the ACF is matched to the object 
DAI and evaluated the similarity. Let A = { a i j )  and 
M = { m i j )  be the DAI of the scene and the model 
DAI from the database, respectively. The following 
preprocessing selects the overlapped pixels between 
them. 

The occlusion in depth images is the one of problems 
which generally occur in the real world situation [lo]. 

In the paper, we introduce Least median of 
squares (LMedS) principle for solving the problem, 
which is one of effect approaches in robust statistics 
such as robust regression. In this approach, we can 
select the best model Ma which achieves the mini- 
mum of the medians between the candidates Ma and 
the object Ah. In LMedS, it is guaranteed for the 
best model to have a t  least a half of residuals each 
of which is less than the value of the least median. 
In this paper, the condition of median is relaxed to  
adopt a quantile of residuals in evaluation of errors. 
A quantile of Q means the (number of overlapped 
pixel) xQth item of the ordered population, for ex- 
ample, the quantile of Q = 0.5 is the median. We 
call this approach by LQR(Least Quantile of Resid- 
ual) where the best model can be selected so as to  
have the minimum of the Q quantile of the residuals. 

Let E and h(E) be the residuals between two 
DAIs and its histogram, respectively. 

model 1 model 2 model 3 model 4 model 5 

model 6 model 7 model 8 model 9 model 10 

Figure 5: Models 

where the ith height in the histogram is given by 
hi, the number of classes by H, and 6(-) means an 
extended Kronecker's delta function which counts 
the number of residuals. 

The quantile of Q is represented by the next equa- 
tion, which is evaluated one after another.. 

fQ(E)  = argmin 
9 

For all the pairs of the object DAI from the scene 
and the DAI from the database, each of the quantile 
values is evaluated for searching the minimum which 
satisfies the condition of being less than a threshold 
w .  If not the case, another three tuple of feature 
points and the ACF is tested to generate the DAI 
and match the models in the database. 

Define the ACF of the best model selected and 
the one of the object by c, and c,, respectively, then 
an expected position and posture of the model in 
the scene can be estimated by transformation of the 
point set P,! = { p : )  through the following: 

In order to search other possible objects after de- 
tection of any object, the same procedure is repeat- 
edly applied to the scene after eliminating any fea- 
ture points with the constant distance dA from the 
transformed points P,!. When a three tuple can not 
constructed any more or all the tuples have tested, 
recognition is quitted. 

4 Experiments 

Depth images are all measured with the pitch of 
2mm in both x, y directions. Fig.5 shows ten mod- 
els used for the experiments. We can find that the 
feature points on their surfaces illustrated by dots 
are distributed near on the edges. Table 1 shows 
the specifications for making DAIs. Table 2  shows 
the numbers of DAI and ACF for each model. These 
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Table 1: Specifications of DAI 
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numbers are very small so that they are around one 
thousandth of the possible supreme number. The 
effect of filtering by right triangles can be verified 
by these numbers. 

Table 3 involves thresholds used in the experi- 
ments. 

The scenes with a single object and without occlu- 
sion were tested as fundamental experiments, where 
the objects were observed from the different orien- 
tations from the ones of models. Fig.G(a) shows the 
results. Wire frame versions of recognized models 
were overlapped on the scene so that partial objects 
with different orientations and occlusion could be 
recognized by the proposed method. 

Next, the scene including multiple objects with 
occlusion were searched by the method as shown 
in Fig.G(b),(c). Some irregular points with deeper 
depth show lack of measurement. In the figure, black 
dots show the feature points detected in terms of 
their curvature features. 
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Table 2: Numbers of DAI for each model 

5 Conclusions 
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We proposed the rigid object recognition method 
based on the depth aspect image. And we also 
introduced robust image matching using the LQR 
method. Feature points reappearance, good appli- 
cation for partial data and scenes including multi- 
ple objects are confirmed through recognition ex- 
periments using 10 models. 
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(c)the scene including 3 objects (#1,#2,#3) 

Figure 6: Results of recognition experiments 
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