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Abstract 

Many geometric fitting problems encountered in 
computer vision are of non-linear nature and have 
a large number of parameters. Typically, iterative 
techniques such as the Levenberg-Marquardt algo- 
rithm are used to compute the optimum of highly 
complex optimization functions. Here we are faced 
with problems of good initial estimates and high risk 
of getting in local optimums. In this paper we pro- 
pose a decomposition approach to alleviating these 
problems by reducing the number of optimization 
parameters. This way not only the optimization 
process itself is simplified, it tends also easier to  in- 
vestigate low-dimensional optimization spaces. We 
apply the decomposition approach to solving various 
fitting problems from both 2D and 3D domain. Par- 
ticularly for cylinder fitting, we are able to reduce 
the number of parameters from five or six of ear- 
lier methods to only two. Experiments have demon- 
strated the advantages of our approach. 

1 Introduction 

Geometric fitting is of fundamental importance 
to many tasks in computer vision. Usually, a seg- 
mentation step is carried out to  group image points 
into sets, each belonging to a different image feature. 
Then, geometric fitting follows to compute the opti- 
mal mathematical representation of an appropriate 
type for each set of image points. This way we are 
able to generate a compact representation of images 
which is the basis for various tasks such object recog- 
nition and reverse engineering. 

Many fitting problems encountered in computer 
vision are of non-linear nature and have a large 
number of parameters. Typically, iterative tech- 
niques such as the Levenberg-Marquardt algorithm 
are used to compute the optimum of highly complex 
optimization functions. Here we are faced with two 
difficulties. First, any such iterative algorithm re- 
quires good initial estimate of the optimum which 
is then refined. It is not always easy to find reason- 
able initial estimates. Secondly, a large number of 
parameters results in a high-dimensional optimiza- 
tion space which may have a very complex topog- 
raphy and therefore brings a high risk of getting in 
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local optimums. In this case we often have troubles 
to analyze the optimization space, for instance by 
means of visualization. Consequently, it may even 
be impossible to specify maximal estimation errors 
of the initial parameter values such that the itera- 
tive process is guaranteed to reach the global op- 
timum. This uncertainty is characteristic to high- 
dimensional non-linear optimization tasks. 

A key issue to alleviate the problems discussed 
above lies in the reduction of the optimization space 
dimensions. A smaller number of parameters tends 
to ease the initial estimation of parameters. In 
this case the optimization space may become sim- 
ple enough to  be analyzed to  get an insight into its 
topography. This will certainly help the initial es- 
timation as well. In this paper we propose a novel 
decomposition approach to reducing the number of 
optimization parameters. Based on a simple idea, 
this technique turns out to be applicable to various 
geometric fitting problems from both 2D and 3D do- 
main. 

2 Decomposition principle 

We assume that n data points pi, i = 1,2 , .  . . , n, 
are to be fitted by a representation function f (a') = 0 
specified by a k-dimensional parameter vector a' E 
Sk. Let d(p, f(a')) be some distance measure of a 
point p to  the function f (a') = 0. Then, geometric 
fitting is formulated as: 

That is, we look for an optimal parameter vector 
ZOpt among all possibilities out of 9ik such that the 
sum of distances is minimized. The formulation (1) 
implies a simultaneous optimization of all k param- 
eters. 

Now we take a slightly different view of the geo- 
metric fitting problem. We decompose the k param- 
eters into a subset t i l  of kl parameters and another 
subset a'2 of k2 (r k - kl) parameters and obtain 
thus a' = til& after some rearrangement of the pa- 
rameter order in a'. Then, the optimization task (1) 
can be stated as: 

arg min A(a'1) 
a, € R k l  



where the term in the brackets, A(a'l), simply means 
the minimum sum of distances for a fixed Zl and all 
possibilities of 22.  There are 2n - 2 such decompo- 
sitions in total. Sometimes we can find a decom- 
position a' = ZlZ2 such that the optimization sub- 
task A(a'1) with k2 parameters becomes a trivial one. 
This is the case when it can be analytically solved to  
obtain a function of Zl or a non-iterative procedure 
is available to compute the minimum for a particu- 
lar Zl. In each situation we have basically reduced 
the initial optimization problem of k parameters to 
a simpler one of kl (< k) parameters. 

3 An illustrative example 

We illustrate the decomposition principle intro- 
duced above by considering the task of finding the 
best fit line of n data points pi in the 2D plane. The 
distance function d ( )  is chosen to be the squared or- 
thogonal distance of pi to the fit line. Based on the 
representation x c o s a  + y sin a = p, which is often 
used for the Hough transform, we obtain: 

Zopt = arg min x ( x i  cos a + yi sin a - p)2 
(a ,p)eR2 Z=I 

There exist only two decomposition possibilities. 
Taking the decomposition ill = (a ) ,  2 2  = ((p, the 
alternative formulation (2) of the optimization task 
turns into: 

arg minlmin C ( z i  cos a + yi sin a - 
PER 

= argmin A(a)  
aER 

The optimization subtask A(a)  is trivially solvable, 
yielding 

1 
pOpt ( a )  = - C ( x i  cos a + y, sin a ) .  

n 
i=l 

Now we are faced with: 
n 

Gpt = arg min x ( x ,  cos a + yi sin a - popt ( a ) )  2 

,=I 

which contains a single parameter a .  The optimiza- 
tion term here can be shown to be a sine function 
and, therefore, the final minimization problem does 
not cause any difficulty. Note that the example is 
only used to illustrate the decomposition approach. 
The 2D line fitting problem represents a special case 
of general super-plane fitting in arbitrary dimensions 
based on squared orthogonal distance function. For 
this purpose solutions are known using eigen com- 
putation (see [6] for the case of three dimensions). 

4 2D line fitting 

The decomposition approach can be shown to  be 
applicable to  a variety of geometric fitting problems, 

Figure 1: Line fitting by L1 approximation (decom- 
position approach, solid line) and Lz approximation 
(eigen computation, dashed line). 

including fitting of 2D/3D lines and cylinders. In 
this section we consider the 2D line fitting problem 
once more. In contrast to the example in the last sec- 
tion, the sum of orthogonal distances is minimized: 

n 

GPt = arg min ~ ~ x i c o s a + y , s i n a - p l .  
(a,p)€WZ i=l 

That is, the L1-norm is applied here which is well- 
known to be more robust than the L2-norm used in 
the illustrative example when dealing with outliers. 
The decomposition Zl = (a) ,  & = (p), results in: 

n 

ZOpt = arg min[min lzi cos a + y, sin a - pi]. 
a € %  PER i=l 

The term A(a) in the brackets is minimal at: 

popt ( a )  = medianlliln(xi cos a + yi sin a ) .  

Finally, we obtain a one-dimensional optimization 
problem: 

Zopt = arg min lxi cos a + y, sin a - popt ( a )  1. 
*=I 

This final task can be solved using any non-linear 
least-squares optimization method. 

We have conducted a series of experiments to ver- 
ify that the decomposition approach works well to 
find the best fit line based on the L1-norm. All 
experiments described in this paper were done in 
MATLAB and non-linear optimization was solved 
using the Levenberg-Marquardt algorithm. Straight 
lines of random a values are generated. Thirty 
points on a straight line are computed and distorted 
in each dimension by a Gaussian noise of zero mean 
and standard deviation 0.3. Then, ten randomly 



Figure 2: Optimization space of 2D line fitting. 

chosen points are displaced in each dimension up to 
a distance 30. Both the L1 approximation based on 
the decomposition approach and the eigen computa- 
tion for the Lz-norm are implemented. The results 
for four straight lines are shown in Figure 1. In all 
cases the L1 approximation provides precise solu- 
tions, while the Lz-norm is very sensitive to outliers. 
We have recorded the results of thirty random runs 
of the program. For the parameter a we get an av- 
erage estimation error 0.45' a t  a standard deviation 
0.30' using L1 approximation. On the other hand, 
the L2-norm results in an average estimation error 
9.89' a t  a standard deviation 6.33'. 

An advantage of the decomposition approach is 
that the optimization space can be more easily inves- 
tigated with a smaller number of parameters. In this 
application we have reduced the original problem of 
two parameters to the single one a .  The optimiza- 
tion space corresponding to the right test instance 
in the bottom row of Figure 1 is shown in Figure 2. 
It has a simple shape and a clear global optimum 
around the ground truth a = 28.58'. An immediate 
consequence of such an optimization space is that 
the initialization is not critical at all. In all experi- 
ments we have simply initialized a by 0'. 

5 Cylinder fitting 

Common quadric surfaces such as cylinders are 
found in most manufactured parts. A reliable es- 
timation of the parameters of cylinders is therefore 
an essential requirement in object recognition and 
reverse engineering. Several researchers have tack- 
led this problem by finding the best quadric surface 
by means of various distance functions, not neces- 
sarily resulting in true cylinders. There exist only 
very few works on faithful cylinder fitting 12, 51. 

A cylinder is represented by a fix point 
( so ,  yo, zo), the directional unit vector v'on its sym- 
metry axis, and the radius T. The directional unit 
vector v'is specified by two angles a and P, where a 
is the angle between the projection of v' onto the xy- 
plane and the x-axis, is the angle between v' and 
the z-axis. Based on the decomposition Zl = ( a ,  P), 
Zz = (xo, yo, 20, T), the fitting task becomes: 

where d ( )  gives an appropriate distance of a point 
to the cylinder. An optimal solution (aopt, Popt) 

means that we obtain a circle when projecting the 
given data points onto a plane that is orthogonal to 
v' and passes through the origin. As a consequence, 
the optimization subtask A(a,  P)  in the brackets can 
be interpreted as finding the best circle for the data 
points after the projection based on ( a ,  P). 

Many solutions exist for the simpler circle approx- 
imation problem. Of particular interest here are the 
methods proposed in [7, 81. Thomas and Chan [8] 
finds the best circle (x - 20)' + (y - = r2  of n 
points (xi, yi), i = 1,2, . . . , n, by minimizing: 

for which an analytical solution exists. In [7] the 
term: 

is minimized based on eigen computation. Note that 
the latter distance function is a better approxima- 
tion of the true Euclidean distance than the first one. 
We may use either of the circle fitting methods to 
compute A(a, P). NOW we have only two parameters 
a and /3 instead of six to solve the initial cylinder 
fitting problem. 

For computing A(a,  0 )  the original data points pi 
are projected onto the auxiliary plane defined above 
which is spanned by two orthogonal unit vectors: 

5.3 = (- sin a,  cos a, 0) 
= (cos a cos ,8, sin a cos /3, - sin /3) 

obtained by partial derivatives of v' = (cos a sin p, 
sin a sin p, cos P). This results in the projected data 
points pf : 

p,' = (pi .n',,pi .$). 

The circle approximation is effectively applied to p:. 
We have used the popular range image set ac- 

quired by a Technical Arts scanner a t  the Michigan 
State University. Images containing cylindrical sur- 
faces are segmented into regions by edge detection [3] 
and a subsequent contour closure [4]. The cylindri- 
cal regions are manually determined and fed to the 
cylinder fitting program. Figure 3 shows an example 
of a segmented image. For this image the brightest 
region is used for cylinder fitting. For the brightest 
region the radius estimation error is 0.35mm and 
0.26mm using the circle fitting method from [7] and 
[8], respectively. The estimated symmetry axis is 
aopt = 127', Popt = 79'. The corresponding opti- 
mization space is drawn in Figure 4. In both cases 
there seems to have two areas of high optimality on 
the left and right side. The reason for this phe- 
nomenon is that ( a ,  p )  and ( a  + T, 7i - P) represent 
the same symmetry axis. Therefore, besides the area 
of high optimality around (aopt, Popt) there must 
be another such area around a = 307", P = 101°, 
which can be clearly observed in Figure 4. Because 
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Figure 3: Region srgmtntation of a range image. 
The brightest region is used for cylinder fitting. 
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of the cyclic nature of angles the whole optimization a- 

space is a repetition of a local space of simple shape. 
~ c c o r d i n ~ l ~ i  we generally have no difficulty to  ini- 
tialize the parameters a and p. In our experiments 
we have simply used O0 for this purpose. 

At this place a comparison of our decomposition 
approach with other faithful cylinder fitting methods 
is in order. Flynn and Jain [2] bases their fitting on a 
cylinder representation of five parameters. It is easy 
to see that using the circle fitting method from [8] we 
have minimized exactly the same optimization term 
as in [2]. Using the circle fitting method from [7], 
on the other hand, the optimization term which we 
minimize is exactly identical to  that one in [5], where 
the authors choose a cylinder representation of six 
parameters. Therefore, we are able to reduce the 
number of parameters from five respectively six to 
only two in solving the same optimization problem. 
This difference is remarkable. 

6 Conclusions 

Geometric fitting is of fundamental importance to  
many tasks in computer vision. Many fitting prob- 
lems encountered here are of non-linear nature and 
have a large number of parameters. Typically, itera- 
tive techniques such as the Levenberg-Marquardt al- 
gorithm are used to compute the optimum of highly 
complex optimization functions. Generally, we are 
faced with problems of good initial estimates and 
high risk of getting in local optimums. In this pa- 
per we have proposed a decomposition approach 
to  alleviating these problems by reducing the num- 
ber of optimization parameters. This way not only 
the optimization process itself is simplified, it tends 
also easier to investigate low-dimensional optimiza- 
tion spaces. We have applied the decomposition 
approach to  solving different fitting problems from 
both 2D and 3D domain. Particularly for cylinder 
fitting, we are able to reduce the number of param- 
eters from five or six of earlier methods to only two. 
Experiments have demonstrated the advantages of 
our approach. 

The decomposition approach is very general. 
Currently, we are investigating its application to 
other geometric fitting problems. In Section 5 we 
have considered fitting of circular cylinders. Basi- 
cally, it is easy to extend it to elliptic cylinders. For 
this purpose we only need to replace the circle fit- 
ting by an ellipse fitting, for instance by the eigen 
computation method from [I]. Another possibility 
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Figure 4: Optimization space of cylinder fitting us- 
ing circle fitting method from [7] (top) and [8] (bot- 
tom). 

of extension is the fitting of cones or even solids 
of revolution. Finally, the decomposition is by no 
means restricted to geometric fitting. It is general 
enough to be potentially applicable to optimization 
problems from other domains. 
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