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Self-Calibration from Optical Flow and Its Reliability Evaluation
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Abstract

An algorithm is presented for 3-D reconstruction from
optical flow observed by an uncalibrated camera. We
show that by incorporating a statistical model of im-
age noise, we can not only compute a statistically opti-
mal shape but also evaluate its reliability in quantitative
terms. We show real-image experiments and discuss the
effect of the “gauge” on the uncertainty description.

1. Introduction

3-D reconstruction from optical flow has been
studied by many researchers [4, 5, 13], but most have
assumed that the camera is calibrated. Recently, the
self-calibration approach using an uncalibrated cam-
era was formulated by Viéville et al. [16] and Brooks
et al. [2]. The self-calibration procedure consists of
the following steps:

1. We detect optical flow from an image sequence.

2. We compute the flow fundamental matrices
from the detected flow.

3. We decompose the computed flow fundamen-
tal matrices into the motion parameters.

4. We compute the 3-D shape of the scene.

In this paper, we show that by incorporating a statis-
tical model of image noise, we can not only compute
a statistically optimal shape but also evaluate its re-
liability in quantitative terms. We show real-image
experiments and discuss the effect of the gauge on
the uncertainty description.

2. Optical Flow Detection

The conventional method for optical flow detec-
tion is based on what is known as the gradient con-
straint [11, 12]. However, the resulting flow does
not have sufficient accuracy for 3-D reconstruction.
Here, we assume that a limited number of salient
feature points are traced by template matching and
other means with high accuracy.

3. Fundamental Matrices

Let {(za,¥s)} and {(zl,¥.)}, @ =1, ..., N, be
image coordinates of two sets of points on two dif-
ferent images. We define the “flow” and the “mid-
point” of the ath point as

*Address: Kiryu, Gunma 376-8515 Japan.
E-mail: kanatani@cs.gunma-u.ac.jp

443

(2t —xa)/ fo
:i:a o (y:. _yn)/f() 3
0
(za +2,)/2f0
Zo = | (Yo +¥a)/2f0 (1)

1

where fy is an appropriate scale factor (e.g., the im-
age size). If noise does not exist, the following epipo-
lar equation is satisfied: [2, 5, 6, 13, 16] (throughout
this paper, the inner product of the vectors @ and b
is denoted by (a,b)):
(:ra; W:j:a) + [:CQ, Ca:a) =0. (2)

Here, W is an antisymmetric matrix, and C is a
symmetric matrix. They play the same role as the
fundamental matrix for finite motion images, so we
call them the flow fundamental matrices.

The matrices W and C are not independent of
each other. The following relationship holds [2]:

Wiy
Wia
Wy,

(w,Cw) =0, (3)

w =

We call this the decomposability condition®.

From {&,, z,}, @ =1, ..., N, the flow fundamen-
tal matrices W and C are computed by a technique
called renormalization [6, 9]. The program is imple-
mented in C++ and is publicly available?. It out-
puts the estimates W and C of the flow fundamental

; < : 5 G = (+)
matrices along with their standard deviations W{ ,

w' &™) and &7, K, say, W) and W) co-
incide up to three significant digits, the estimate W
is likely to have accuracy up to approximately three

significant digits.
4. Motion Parameters

We assume that the camera is freely moving and
freely changing its focal length. Other camera pa-
rameters such as the principal point, the aspect ra-
tio, and the skew angle, which usually do not change
in the course of camera motion, are assumed to be

'This corresponds to the constraint that the fundamental
matrix for finite motion should have rank 2.
2http://www.ail.cs.gunma-u.ac.jp/ "kanatani/e.



calibrated beforehand. Hence, the unknown param-
eters are the translation velocity v, the rotation ve-
locity w, the focal length f, and its change rate f.

Brooks et al. [2] showed that these parameters can
be computed analytically from W = (W};) and C
= (Cjj), but their computation involves rather com-
plicated algebraic manipulations. Here, we present
an elegant group-theoretical procedure derived by ex-
pressing quantities in terms of irreducible represen-
tations of the group of 2-D rotations SO(2) [3].

Let w = (w;) be the vector defined in egs. (3),
and do the following computation:

A=Ch + Cay, = (C11 = C2) + 2iCya, (4)
C-' = 2(013 + iCEE)! D= C33! (5)
w = w; + 1wy, Q'=£, (6}
w

wy = R[@], wy = Q@] (7)

_ A+ (w,0)
W3z = "——“—zwa [SJ

; D -_C'—f'gwau-)"
f = —(@‘a,}r ¢- D ? {g)
ws = R[9], f''=-f3d], (10)
= flwy, wy = flwy, (11)
f={£fo, f=fr. (12)
un

v=N| w I (13)

(f/ fo)ws

Here, ¢ is the imaginary unit. The quantities with
tildes are complex numbers: R[-] and 3[-] denote
the real and imaginary parts, respectively. We define
the “inner product” of complex numbers z = = +
iy and 2’ = z2' + 1y’ by (2,2') = z2' + yy'. The
operation N|-] designates normalization into a unit
vector: N[a] = a/||al|.

In the above procedure, w; is computed by eq. (8)
and by the first of egs. (10) in two ways. The decom-
posability condition (3) requires that the two values
coincide.

However, a degenerate configuration in which the
above computation fails occurs when the camera op-
tical axis moves within the plane spanned by it and
the translation velocity v, e.g., when the camera un-
dergoes a pure translation or the camera optical axis
passes through a fixed point in the scene.

5. Correction of Flow

Let Vp[z] and Vp[z] be the covariance matrices of
the position x and the flow @ defined up to scale.
They can be determined from the Hessian of the
residual surface of template matching of gray lev-
els [14, 15]. If no prior information is available, we
may use the default values Vy[&] = 2diag(1,1,0) and

Vo[z] = diag(1,1,0)/2, where diag(: -
diagonal matrix with diagonal elements - - -
order.

In the presence of noise, the data ¢ and z may
not necessarily satisfy eq. (2) for the computed flow
fundamental matrices C and W. So, we optimally
correct  and x to enforce eq. (2). This is done as
follows [6]:

-) denotes the
in that

=i+ 5%"’,“%14,[ W,
§ = ) Volel(Wi +2Cz). (19
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Here, we define

E(&.z) =
Vi, z) =

(z,W2z) + (z,Cx),
(Wz, Vo[z]|Wa)
+(We + 2Cz, Vp[z](Wz + 2Cx)). (15)

The covariance matrices of the resulting values &
and & are given as follows [6]:
(Vol&]Wz) (Vol&]Wz)

Vi(z,x) 2

Volz] = Vol#] -
Vo[z] = Vol]

_Volz](Wi+2Cz)(Vo[z] Wa:+2C:r:))
V(iz,z)

(16)

We assume that errors in & and x are statlstlca.il}f
independent, but the corrected values © and & have
the following correlation: [6]:

Volz)(Wz + 2Cx)(Vy[&]|Wx) T

Vol&, 2] = Vo) (17)

6. Focal Length Adjustment

After the focal length f and its change rate f
have been computed, we transform & and x and
their covariance matrices as follows (we define Py

= diag(1,1,0)):

& &(a: - iP.‘::,-) & dlag(% % 1)z,

S f

Vold] ;‘; (volé] - 2 S[Vg[m i)+ ——Vn[:c])
Volz, 2] « ‘;“ (L‘b[i:,a::] - j—;l'];.[:i:]),
Vol&) « %Lb{i]. (18)

Then, we can view the imaging geometry as if using
a perspective camera with unit focal length.

7. Depth Computation



The depth Z of the point z is given as follows [6]:

_ (v, Sxv)
T (v, Sx(z+wxz))

(19)

Here, we define

Se= QIQ;"

and k = (0,0,1)7. The 3-D position of this point is
given by

Q. =I-zk', (20)

r=27. (21)

At this point, we need to check the sign of the depth.
This is because the signs of W and C are indeter-
minate as implied by eq. (2). Let Z, be the depth
associated with &,. We replace the sign of each Z,
if Z:ﬂ sgn[Z,] < 0, where sgn[-] is the signature
function that takes 1, 0, and —1 forz > 0.z = 0,
and r < 0, respectively.

8. Reliability Evaluation
From eq. (21), the covariance matrix of the recon-
structed position 7 is given up to scale as follows:
o[f] = Z2Vplz) + 228[Vo[Z,2)2 ) + Vol Z)a "
(22)
The matrix Vy[z] is given in eqs. (18). From

eqs. (19), the matrices V[Z] and %[2,:&] are given
as follows:

wfsi,-(v)“(%[é’] +28[Qq (w x Vo[, z])
—aVy[&, &) + Qx(w x Vo] x w)QT
~25(Qx(w x Vo[@])] + a*Vo[2]),

Z‘z

(v, Sxv) (l-{][&:,i:]Q*v

~Vol#)(w x Sxv + aQ,-‘v)).

Vol2)

VolZ, 2] =
(23)

Here, tr denotes trace, and we define

a= (k,‘v) + |k, w, &|.
Z

However, this analysis is based on the computed flow
fundamental matrices C and W. They are com-
puted from the data {&., ¢o}, @ = 1, ..., N, and
hence are not exact. It follows that the values f, f, v
and w are not exact. However, it is difficult to ana-
lyze the error propagation precisely. Here, we adopt
the following approximation. We reconstruct two 3-
D positions r(*) for & from the standard deviations
C'*) and W) and regard (r(*) — #)(rH) — #)7
as the covariance matrix of r due to the errors in (&4
and W. The total covariance matrix of # is given
by

(24)

VIF] = EVol#] + (¢ =) () =T, (25)
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Figure 2: 3-D reconstruction and uncertainty ellipsoids
(stereogram).

where é” is the absolute noise magnitude, which can

be estimated in the process of computing C and W
(6, 9].

9. Real Image Experiment

We reconstructed the 3-D shape from the two im-
ages shown in Fig. 1, using the feature points marked
in the images. Fig. 2 is a side view of the recon-
structed points (stereogram); wireframes are shown
for some points. On each reconstructed point is cen-
tered the uncertainty ellipsoid defined by the covari-
ance matrix given by eq. (25). All ellipsoids look like
thin needles, indicating that the uncertainty is large
along the depth orientation.

This description is deceptive, however. This un-
certainty description is based on a particular gauge,
i.e., a choice of normalization: the world coordi-
nate system is identified with the camera frame and
the translation velocity is normalized to unit length
[8, 10]. This gauge hides the fact that the uncer-
tainty is mostly due to that of the translation ve-
locity. In fact, what is uncertain is the depth of the
object as a whole, not the object shape.

For example, if we take the centroid of the poly-
hedral object as the coordinate origin and normalize
the root-mean-square distance to the vertices from
the centroid to unit length, we obtain the description
shown in Fig. 3(a). By construction, the uncertainty
is almost symmetric with respect to the centroid,
and the object shape has very little uncertainty.

Fig. 3(b) is the uncertainty description for yet an-
other gauge: one of the object vertex is taken to be
the coordinate origin, another is taken to be (1,1,0),
and a third one is on the XY plane. By definition,
the first two points have no uncertainty.

It follows that uncertainty of individual quantities
has no absolute meaning. In other words, the dis-
crepancy of the reconstructed quantities from their




(a) (b)
Figure 3: Gauge dependence of uncertainty descrip-
tion. (a) Normalization based on the centroid. (b) Nor-
malization based on three vertices.

ratio | angle (deg)
computed value 1.02 95.1
true value 1.00 90.0
predicted standard deviation | 0.08 17.0
Table 1: Reliability of gauge invariants.

true values is not a meaningful measure of accuracy
if artificial normalizations are involved.

Let us call the description changes due to choos-
ing different gauges (i.e., normalizations) gauge
transformations. Absolute meaning can be given
only to gauge invariants (8], i.e., quantities invariant
to gauge transformations. Typical gauge invariants
for Euclidean reconstruction are ratios of lengths
and angles of lines. Table 1 lists the ratio of two
sides of the polyhedral object and the angle they
make along with their true values and their stan-
dard deviations derived by the covariance matrices
of the vertices.

Fig. 4 shows two real images of a car. Fig. 5
shows its 3-D shape computed from the feature
points marked in these images. We defined a wire-
frame with triangular meshes from the reconstructed
points and mapped the texture onto it. A fairly ac-
curate 3-D shape is created even though only two
views are used.

10. Concluding Remarks

An algorithm has been presented for 3-D recon-
struction from optical flow observed by an uncali-
brated camera. We have shown that by incorpo-
rating a statistical model of image noise, we can
not only compute a statistically optimal shape but
also evaluate its reliability in quantitative terms, al-
though the accuracy is not as high as that using
the fundamental matrix [1, 7). We have shown real-
image experiments and discussed the effect of the
gauge on the uncertainty description.
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Figure 5: Reconstructed 3-D shape.

References

(1] L. Baumela, L. Agapito, P. Bustos and [. Reid, Mo-
tion estimation using the differential epipolar equation,
Proc. 15th Int. Conf. Patt. Recogn., September 2000,
Barcelona, Spain, Vol.3, pp. 848-851.

M. J. Brooks, W. Chojnacki and L. Baumera, Deter-
mining the egomotion of an uncalibrated camera from
instantaneous optical flow, J. Opt. Sec. Am., A, 14-10
(1997), 2670-2677.

K. Kanatani, Group-Theoretical Methods in Image Un-
derstanding, Springer, Berlin, 1990,

K. Kanatani, 3-D interpretation of optical flow by renor-
malization, Int. J. Comput. Vision, 11-3 (1993), 267-
282.

K. Kanatani, Geometric Computation for Machine Vi-
ston, Oxford University Press, Oxford, 1993.

K. Kanatani, Statistical Optimization for Geometric Com-
putation: Theory and Practice, Elsevier, Amsterdam,
1996.

K. Kanatani, Gauge-based reliability analysis of 3-D re-
construction from two uncalibrated perspective views,
Proc. 15th Int. Conf. Patt. Recogn, September 2000,
Barcelona, Spain, Vol.1, pp. 76-79.

K. Kanatani and D. D. Morris, Gauges and gauge trans-
formations in 3D reconstruction from a sequence of im-
ages, Proc. {th Asian Conf. Computer Vision, January
2000, Taipei, Taiwan, pp. 1046 - 1051,

K. Kanatani, Y. Shimizu, N. Ohta, M. J. Brooks, W.
Chojnacki and A. van den Hengel, Fundamental matrix
from optical flow: Optimal computation and reliability
evaluation, J. Electronic Imaging, 9-2 (2000), 194-202.
D. D. Morris, K. Kanatani and T. Kanade, Uncertainty
modeling for optimal structure from motion, IEEE Work-
shop on Vision Algorithm: Theory and Practice, Septem-
ber 1999, Corfu, Greece, pp. 33-40.

N. Ohta, Image movement detection with reliability in-
dices, JEICFE Trans., ET9-10 (1991), 3379-3388.

N. Ohta, Optical flow detection using a general noise
model, IEICE Trans. Inf. €4 Syst., ET9-D-7 (1996), 951~
957.

N. Ohta and K. Kanatani, Optimal structure-from-motion
algorithm for optical flow, IEICE Trans. Inf. & Sys.,
E78-D-12 (1995), 1559-1566.

J. Shi and C. Tomasi, “Good features to track,” in Proc.
IEEE Conf. Comput. Vision Patt. Recogn., June 1994,
Seattle, WA, U.S.A., pp. 593-600.

A. Singh, “An estimation-theoretic framework for image-
flow computation,” in Proc. drd Int. Conf. Comput. Vi-
sion, December, 1990, Osaka, Japan, pp. 168-177.

T. Viéville and O. D. Faugeras, The first order expansion
of motion equations in the uncalibrated case, Comput.
Vision Image Understanding, 64-1 (1996), 128-146.

(2]

(3]

(4]

(3]

(6]

7]

(8]

(9]

(10]

(11]
(12]
[13]
(14]
(15]

(16]





