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Abstract 
Automated left ventricle ( L V )  boundary delineation 

f r o m  contrast ventriculograms has been studied for 
decades. Unfortunately ,  n o  accurate methods have 
ever  been reported. A n e w  knowledge based multi-stage 
method t o  automatically delineate the  L V  boundary a t  
end diastole and end systole i s  discussed in this  paper. 
I t  has  a m e a n  absolute boundary error of about Z m m  
and a n  associated ejection fraction error of about 6%. 
T h e  method makes  extensive  use  o f  knowledge about 
L V  shape and m o v e m e n t .  T h e  processing includes a 
mul t i - image pixel region classification, a shape regres- 
s ion  and a rejection classification. T h e  method was 
trained and tested o n  a database of 375 studies whose 
ED and ES boundary have been manual ly  traced as  
t h e  ground truth .  T h e  cross-validated results presented 
in this  paper shows that  the  accuracy i s  close t o  and 
slightly above interobserver variability. 

1 Introduction 
The LVG boundary at end diastole (ED) and ends 

a t  end systole (ES) are particularly interested in, be- 
cause of their importance of assessing the LV func- 
tion, Tracing the LV boundaries from LVG is a tedious 
job. Although automated LV boundary delineation 
(ABD) in LVGs has long been sought [I, 2, 3, 4, 5, 61, 
no accurate methods have been reported due to  the 
challenges of LVG variation. Moreover, most methods 
were tested on only a limited number of LVG samples 
so that no consistent accuracy evaluation concerning 
LV volume and ejection fraction (EF) was available. 
Thus, the ABD methods used in clinics performed 
poorly. 

Most previously reported methods have difficulties 
in handling the large variation in LVGs because the 
information in LVGs and the human knowledge in- 

formation were not effectively utilized. First, most of 
the methods only processed a single image at a time to  
detect the boundary [ l ,  2, 41. Such methods ignored 
the helpful LV movement information through time 
in the cardiac cycle. Second, the edge based meth- 
ods [2, 3, 4, 51 used the gradient maxima whose lo- 
cations, however, do not correspond to the boundary 
positions and the region based methods [I,  61 assumed 
a Gaussian distribution of the gray scales in LV and 
background, which is not true. Third, the LV shape 
information was used only to model the LV boundary 
[2, 31 rather than the LV region. Fourth, all previ- 
ous existing algorithms processed all input LVGs in- 
discriminately. They did not screen out the difficult- 
to-process cases. On contrast, human experts do uti- 
lize movement information in the time domain to re- 
solve boundary fuzziness. They are trained to have 
anatomical knowledge about the LV and to reject cases 
with bad image quality. Our method implement these 
sources of knowledge in the ABD system. 

Our method is composed of three stages. The first 
stage is a pixel region non-parametric classifier. It seg- 
ments the LV region from the background and obtains 
a raw LV boundary. The second stage is a shape re- 
gression [8] that corrects the systematic error of the 
region classifier. The last stage is a rejection classifier 
that flags unreliable results. In order to incorporate 
anatomical knowledge into the system, the user enters 
points a t  ED and ES to identify the endpoints of the 
aortic valve (AoV) and the LV apex. The three points 
are used to normalize for expected shape and size. 

In the next section, our method is discussed in de- 
tail. Some experimental results are presented in Sec- 
tion 3. The conclusion and discussion are in Section 4. 



2 Method 
Figure 1 shows the flow chart of our three-stage 

ABD system. Because ES involves more variation 
than ED, the ED result is usually more reliable than 
the ES result and can help with the ES boundary de- 
lineation. Therefore, our processing of the ES bound- 
ary is conditioned on the detected ED boundary. 

(mm) unit. This normalizes the image size and ben- 
efits the performance evaluation in mm unit. Noise 
filtering is implemented by the gray scale morphologi- 
cal opening and closing [7]. This preserves the location 
of gray scale boundary transition a t  the same time fil- 
tering out the noise. The heart rate normalization is 
essential to the classification in that it makes the raw 
feature vector dimension a constant 12. 

The gray scale values over the 12 image frames are 
then normalized by the cumulative distribution func- 
tion (CDF) within the region of interest (ROI) in the 
sequence, where the ROI is the area outside which no 
part of the LV would occur. Hence, 

Figure 1: Sequential processing for ED and ES region. 

2.1 Pixel Region Classification 
The Bayesian pixel classifier labels each pixel in the 

image frame of the 12 dimensional systole images with 
one of 3 classes, background, ED-not-ES and ES based 
on the systole gray scale vector, shown in Figure 2. 
The underlying concept is that background pixels re- 
tain their intensities throughout systole, ES pixels in- 
crease their intensities throughout systole, and ED- 
not-ES pixels demonstrate a characteristic pattern of 
gray values over time depending on location as the LV 
border passes over the pixels during contraction. 

Figure 2: The Gray Scale Vector. 

Before classification, the systole images from ED to 
ES go through pixel size calibration [6], noise filter- 
ing [6] and are normalized to  12 frames to  adjust for 
variability in frame rate and heart rate [6]. The pixel 
size calibration makes the pixel square in millimeter 

where i  E 1 , .  . . ,12 is the image frame index, (u, v) is 
the pixel location in the image frame, n, is the number 
of pixels whose gray scale is j in the ROI on the 12 
image frames, N is the total number of pixels in the 
ROI of the 12 image frames, gi(u, V) is the original 
pixel gray scale at (u, v) of the i th image frame, yi(u, v) 
is the pixel value a t  (u, v )  of the i th image frame after 
normalization. The normalization is with respect to 
the entire systole sequence because this keeps the gray 
scale value change pattern through systole. The CDF 
normalization expands the gray scale dynamic range 
and increases the separability among classes. 

The 12 CDF normalized pixel values at each pixel 
location form a vector, Y = (yl, . . . , ylz). The vector 
is projected onto the eigenvectors of the second mo- 
ment matrix of the sample pixel value vectors, Y = 

xgl where M is the total number of training 
vectors. In our data set of 375 cases, M = 40,056,750. 
The eigenvectors are ordered so that their eigenvalues 
are descending. The first four principal components 
of Y,  X = (x l , .  . . , x4), are used as the feature vector 
for the classifier. 

The pixel classification is based on a Bayesian rule 
maximizing the expect gain. Given the gain matrix 
G = {g(c,cl)lc, c' E {1,2,3)), where 1 means the 
background class, 2 means the ED-not-ES class, 3 
means the ES class, and g(c, c') is the gain of assigning 
to class c while the true class is c', the expected gain 
of classifying X a t  (u, v) to class c is 

The Bayesian rule classifies X a t  (u, v) to class c if the 
assignment to class c yields the maximal gain. 



where c' E {1,2,3). 
p(clX, (u, v)) is the posterior probability of class c 

given the feature vector X at location (u, v). For the 
ED pixel classification, 

where p(cl(u,v)) is the prior probability of class c E 
{1,2,3) at (u, v), p(X1c) is the class conditional prob- 
ability of X given class c which is assumed to be in- 
dependent of (u, v) . 

For the ES pixel classification, the posterior prob- 
ability p(clX, (u, v)) depends on the previously delin- 
eated ED boundary and is written as. 

where p(dlc, (u, v)) is the probability of the short- 
est distance d between (u,v) and the delineated ED 
boundary given class c. This is the way that the in- 
formation from the delineated ED boundary is intro- 
duced to the ES boundary detector. 

After the classification, the pixels of the same class 
are grouped together. The largest area consisting of 
Class 2 and 3 pixels is selected as the ED region and 
the ES region is the largest area composed of Class 3 
pixels. The binary morphological opening and closing 
are used to smooth the region boundary. After that, 
the raw ED or ES boundary is traced from the ED 
or ES region and represented by 100 evenly spaced 
points. 

The classifier training includes estimating the class 
conditional probability p(Xlc), the prior probability 
p(cl(u, v)) and the class conditional distance probabil- 
ity p(dlc, (u, v)). 

Reducing the feature vector dimension from 12 to  
4 makes it possible to estimate the class conditional 
probabilities p(X1c) non-parametrically from a 4D 
look-up table (LUT). The LUT divides the 4D space 
into non-uniformly sized hyperrectangular bins and 
estimating the probability in each hyperrectangle by 
simply counting. To determine the class conditional 
probability of a feature vector, the feature vector is 
quantized to make an address to access the LUT. The 
probability is looked up from the addressed entry in 
the table. The quantization and bin size allocation de- 
pend on the marginal entropy on each dimension and 
are generalized by the cross validated Kullback-Liebler 
distance and k nearest neighbors (k - NN) .  

The class prior probabilities a t  each pixel location 
are the knowledge about the LV shape, size and posi- 
tion. A set of ground truth class region images gen- 
erated from the hand traced boundaries are aligned 
to a common LV region by fitting their AoV angles 

and long axes with the least squares. The LV AoV 
angle and long axis are defined by the AoV end points 
and apex. This alignment efficiently keeps the LV 
region information. The probability of each class at 
each pixel location is estimated by frequency counting 
from the aligned ground truth class region images and 
smoothing with a 7 x 7 square template. By this way, 
we formulate the high level LV anatomical knowledge 
in terms of LV region. 

Given the delineated ED boundary, the shortest 
distance between a pixel location and the boundary 
can be computed. The distance is signed. The pixel 
inside the ED boundary has a minus sign, outside has a 
plus sign and on the boundary is zero. The ED bound- 
ary is divided into several segments since the wall 
movement along the ED boundary is not even. The 
class conditional distance histograms are then setup 
for each segment, given the pixel class and the cor- 
respondent segment on the ED boundary. The class 
conditional distance probabilities are estimated from 
the histograms. 

2.2 Shape Regression 
It is observed that the classifiers have some system- 

atic errors which makes the raw classifier boundaries 
out of the LV like shape. In order to calibrate those er- 
rors, a shape regression is designed. An LV boundary 
is taken as a 200 dimensional vector by concatenating 
its vertex coordinates into a vector. The boundary 
vector has its coordinates in the LV shape space de- 
fined by the eigenvectors of the second moment matrix 
of the sample ground truth boundary vectors. The 
regression is to transform the the coordinates of the 
raw classifier boundary vector to  a place in the LV 
shape space where the coordinates are more like an 
LV boundary. 

The regression vector is composed of the projected 
coordinates of the raw boundary vector on the eigen- 
vectors of the second moment matrix of the sample 
ground truth boundary vectors and augmented by the 
user entered AoV endpoints and apex which put more 
constraints on the regression results with the size and 
shape indicated by the 3 points. As a result, the re- 
gressed boundary coordinates are the linear combina- 
tions of the coordinates in the shape space and the 
quadratic terms of the user entered points. 

Given 

. A  raw boundary vector, Y - - 
(TI, CI, . . . , TIOO, CIOO), from the classifier 

Two AoV points and apex coordinates entered by 
the user 



A matrix A,  whose columns are the full set of the 
eigenvectors of the sample second moment matrix 
of the ground truth boundary space 

A regression coefficient matrix C(P,+t) P3 deter- 
mined offline by training 

The regressed boundary is 

where B is the calibrated boundary, T is the augmen- 
tation terms coming from the 3 user input points, Aq 
and Ap, are matrices of the first P2 and P3 eigenvec- 
tors in A,  the prime denotes the transpose. For the 
ED boundary, the regression vector is augmented with 
the full quadratic terms of the three user entered ED 
points which form 28 terms. For the ES boundary, the 
regression vector is augmented with the full quadratic 
terms of the three user entered ES points and some 
partial quadratic terms of the three ED points. 

The regression coefficient estimation is imple- 
mented as a least squares fitting given the ground 
truth boundary vectors and the classifier boundary 
vectors. The numbers of principal components in- 
volved in the regression, P2 and P3, are optimized to 
avoid the potential generalization problem. The par- 
tial quadratic terms which represent the information 
ED boundary contains for the ES boundary is also 
determined by the least squares fitting. 
2.3 Rejection Classifier 

From the raw and calibrated boundaries, two sets of 
parameters including the ED and ES volumes, EF, ED 
and ES areas can be computed. Also the ED bound- 
ary difference and ES boundary difference between the 
classifier and regression results can be obtained. The 
rejection classifier takes those parameters as the rejec- 
tion vector vector. The difference between the two sets 
of the parameters indicates, more or less, the unrelia- 
bility of the border detection. Given the classification 
weights Y7x1 on the rejection feature vector Ulx7 and 
a decision threshold t 2 ,  a study is rejected if the dif- 
ference is greater than the threshold, 

The rejection classifier is trained to reject roughly 
5% of the worst cases in terms of ED volume, ES vol- 
ume and EF. The training is the least squares fitting 
based and optimized by minimizing the rejection cost. 
2.4 Performance Evaluation and System 

Optimization 
Given a LV boundary, the LV volume can be com- 

puted [12]. The ejection fraction (EF) can be com- 
puted if the ED and ES volume are available. The 
mean absolute ED volume deviation, ES volume devi- 
ation and EF deviation between the ABD results and 

hand traced results and their standard error estima- 
tions (SEE) are used for the ABD system performance 
evaluations. Beside those, the boundary error between 
two boundaries is defined as 

where h(A1, A2) is the Hamming distance between the 
two boundaries, pl and pz are the perimeter of the two 
boundaries respectively. 

The whole system is optimized to minimize the cost 
after the rejection. The tuned training parameters 
include the LUT size, the LUT smoothing parameter 
k-NN, the prior probability smoothing parameter, the 
distance histogram sectors, the gain matrices (EGMs), 
the regression dimensions P2, P3, and the rejection 
threshold t2. 

3 Experiment and Results 
The system was trained and tested with cross vali- 

dation on 375 LVGs. Each study of the 375 cases had 
its ED and ES boundary traced by a human expert. 
Those hand traced boundaries were used as the ground 
truth for the ABD performance evaluation. From the 
hand traced boundary, the ground truth class region 
image was generated by filling the area enclosed by the 
boundaries. It gave each pixel in the image a ground 
truth class. 

The 375 studies were divided into 5 groups. The 
experiments were trained on 4 groups and tested on 
the remaining. They were repeated for 5 times until 
every study was involved in the testing. 

Figure 3 shows an example of the ED and ES ABD 
results. Figure 4 shows the scatter plots of the ED 
volume, ES volume and EF after the rejection. 

Table 1: Table of the ABD system performance 

Table 1 shows that the deviations between the ABD 
results and the ground truth. The average of the mean 
absolute boundary error of ED and ES was about 
1.85mm. It outperformed Lee [6] and Suri's [8] re- 
sults where they were about 3.4mm and 2.7mm re- 
spectively. It also shows the volume related devia- 
tions. Compared with Table 2, the results after the 

ED Volume 
ES Volume 

EF 
ED Border 
ES Border 

Mean Absolute Error 
10.48ml 
8.17ml 
5.96% 

1.55mm 
2.15mm 



Figure 3: 

(a) ED Franir: GT and Regrrssed 

An example of the ABD results (thin) comp 

( 1 ) )  ES Fra~~lr.: G T  a11tl Regrt.ssic~n 

lared with their ground truth (GT) boundaries (thick) 

Figure 4: Left: The ED volume scatter plot after rejection. Middle: The ES volume scatter plot after rejection. 
Right: The EF scatter plot after rejection. 

Table 2: Interobserver variability in terms of mean absolute deviation 



rejection were slightly above human interobserver vari- 
ability. Since the ABD was tested on a large database, 
the performance is expected to be extendible. 

4 Conclusion 
The results of the present report indicate that the 

ABD process presented is able to detect and delin- 
eate the endocardia1 contour of the left ventricle from 
contrast ventriculograms with an accuracy compara- 
ble to the magnitude of human interobserver variabil- 
ity. The success of this process is due to the integra- 
tion of knowledge concerning human cardiac anatomy 
and physiology. 

The classifier embodies knowledge concerning the 
expected regional movement of the ventricular wall 
during systole. With it we sought to emulate the 
human observer's practice of reviewing wall motion 
through the cardiac cycle to help define the endocar- 
dial contour. 

The regression embodies knowledge concerning the 
expected shape of the LV endocardium. Just as human 
observers require training to recognize heart contours, 
we sought to provide this to the ABD process. The 
shape analysis was not only performed on each image's 
candidate border, but also between image frames. The 
latter captures the expectation that the ES border will 
bear some resemblance to the ED border. 

The third component is our code for rejecting stud- 
ies whose images produced suspicious borders. Just 
as clinical ventriculograms are rejected for manual 
tracing if there is poor contrast quality, we sought a 
method to warn the user of these problems with the 
ABD process. 

The large number of training studies and the nor- 
malization before pixel region classification helped in 
large part to ensure that the component processes were 
generalized. 
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