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Abstract prediction of the motion parameters thanks to 
the Kalman filter 

This paper describes a tracking method that we optimization of the predicted region thanks to  
have developed in order to track a barium bolus in ra- a deformable region model 
diological images sequences. Our method combines 
both region tracking by the means of a deformable 
region model, and contour tracking by the means 
of active contours. It  allows the tracking of a bar- 
ium bolus during its descent along the oesophagus 
and the lower oesophageal sphincter. Thus, we are 
enable to realize measurements of parameters that 
caracterize the sphincter, such as its length an its 
diameter. 

This study takes part in a larger project, the aim 
of which is the improvement of the gastroesophageal 
reflux phenomenon understanding [2]. 

1 Introduction 

Our goal is to track the bolus through radiologi- 
cal images sequences. The bolus can be considered 
as a deformable shape. Many tracking algorithms 
have been proposed lately [3, 4, 51. The method 
we have developed combines region tracking thanks 
to a deformable region model, and contour tracking 
thanks to active contours. The tracking algorithm 
is presented figure 1. 

The first step of the algorithm is the identification 
of the object to track: region R (the bolus). To do 
so, the first image of the sequence, where the bolus 
appears, has to  be determined thanks to the study of 
grey levels variations. Then, the active contours 
algorithm is applied in order to obtain the boundary 
of the region R. 

Once the region R has been detected, it then has 
to be tracked. The tracking method is composed of 
four main modules: 

optimization of the region boundary thanks 
to active contours 

motion estimation thanks to  a simulated 
annealing method 

These four steps will be described, after a presen- 
tation of the motion modelization. 

Region at instant t 

Motion Prediction 
by Kalman filter 

Region optimization 
by a defomable region model 

Contour optimization 
by active contours 

Motion estimation 
by MSRE minimization 

Figure 1: Tracking algorithm. 
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eters proposed in [9]. The displacement z of each 
point (x, y) of the region R is given by: 

The vector ( :: ) represents the translation pa- 

rameters of the gravity center, the coordinates of 
which are: (xG , yG). 

Thus, the motion is entirely defined by a vector 
called the motion descriptor: 

3 Motion parameters prediction by 
the kalman filter 

The Kalman filter introduced in [7], and pre- 
sented in [lo], represents a recursive solution to the 
discrete-data linear filtering problem. It consists in 
the estimation of a state vector Q of a system gov- 
erned by the equation: 

from noisy measurement s so that: 

The Matrix A represents the transition matrix from 
time t to t + 1. H is called the observation matrix. w 
and v are random variables representing respectively 
the process noise and measurement noise. 

We have used the Kalman filter in order to pre- 
dict an optimal motion descriptor thanks to pre- 
vious measurements. Thus, our state vector is com- 
posed of the motion parameters and their first order 
temporal derivatives, the motion being considered 
as non-accelerated: 

Qt = ( t z t ,  ty , ,  at ,  bt, ct,dt, t,,,ty,, at ,  b t , ~ ~ , d ~ ) ~  

Only motion parameters are measured. There- 
fore, the measurement vector s is: 

st = ( tz t ,  tyt , at,  bt, ct, dt)T 

The filter provides an estimation of the state vec- 
tor Qt, a t  instant t ,  using noisy measurements st, in 
order to  predict the state a t  instant t + 1: 9t+l .  

4 Optimization of the region by a de- 
formable region model 

Once the prediction phase has been realized, the 
predicted motion parameters are then available. A 
predicted contour is thus obtained. However, with 
this prediction, the region does not always perfectly 

match the real region. This is the reason why we 
have used a deformable region model, inspired from 
the one of [3]. The aim of this model is to allow the 
optimization of the region shape and position. 

The deformable region model is defined by both 
a contour and an energy. 

The optimization of the deformable region is re- 
alized iteratively by a minimization of its energy, 
measuring the similarity of the grey levels, between 
the points of the region and those of the region ex- 
tracted from the previous image. 

The use of this information given by the whole 
region improves the accuracy of the tracking in both 
case of large displacements of the object and noisy 
images. 

The region deformation is entirely constrained by 
the motion model (affine model). Thus, the de- 
formable region parameters that are optimized are 
the region motion parameters. 

The region contour is modelized by an ordered 
set of n points: 

w = {wi = (xi,yi)/i E [ l ,n])  

The points inside the region are obtained thanks 
to a filling algorithm, following a linear interpolation 
of the contour points. 

The region energy is defined by: 

where: 
Rt is the region extracted from the previous image 
a t  instant t, 
SR, is the surface of the region Rt  in pixels, 
p'is a point located in the image, 
d: (8 is the translation vector of the point p' from 
instant t to instant t + 1, 
It(p3 is the grey level of the image a t  instant t and 
a t  point 6 

This energy only depends on d;+ ( 8  and so 0:. 
Thus, minimising the deformable region energy 

amounts to determine the motion descriptor O: for 
which this energy is minimum: 

O: = arge+ min E 

The minimization of the energy is realized thanks 
to a simulated annealing method described in [6] .  
The advantage of this method is that, contrary to 
traditionnal methods such as the steepest descent [9], 
it does not give the first minimum encountered, but, 
generaly the global minimum. 

5 Optimization of the boundaries by 
active contours 

The previous step of the algorithm has allowed 
the optimization of the region that was predicted 



by tlie Kalman filter. However, deformable region 
models used for region tracking, have difficulty in de- 
termining the region boundary with accuracy. Thus, 
it has appeared interesting to associate a deformable 
region model with a deformable contour model. The 
last-mentioned goal is to make the object boundary 
rnatch the real object boundary. The deformable 
contour model chosen is the active contours. 

Several methods of actives contours could be con- 
ceivable [8, 11. The one proposed in [ll] has been 
chosen since it has appeared to be stable and fast. 
This method relies on the representation of the con- 
tour by an ordered set of n points, which, in our 

region by the same set of points w. Thus, it is nec- 
essary for the points of w to be homogeneously dis- 
tributed around the region contour. 

In order to re-sample the contour, a linear inter- 
polation between the points of w is realized. This 
enables to determine the set of pixels in the image 
that belong to the region contour. They represent 
a one-pixel-wide curve. The new contour w' is ex- 
tract,ed from that curve so t,hat the points of w' are 
separated by the same number of pixels. 

6 Motion estimation 
case, is the same as the one of the deformable region 
model: At this point, the conto~ir wt+l of the region Rt+, 

w = {wi = (xi, yi) / i  E [ l ,n]} in the image It+l, is clearly defined. 
Finally, it is necessary to estimate the motion 

These points the bound- from It to It+r in order to supply the Knlman 81- 
ary of the object by a minimization of an energy ter. 
function. 

The principle of the motion estimation st,ep is 
For each point wi in the neighborhood of wi, an 

to minimize the M S R E  (Mean Squ,ared Reconstruc- 
energy term is computed: 

tion Error) of the region Rt+,  in It+, from the re- 

E(wi) = ~ E i n t  (w:) + P E e z t  (w:) gion Rt  in I t :  

where E,,,t is the internal energy term that imposes 
a certain regularity of the contour and EeZt is the 
external energy term linked to the global image. a 
and are constants providing the relative weight of 
the energy terms. 

Each point wi is then moved to its neighbor cor- 
responding to  the location of the minimum value of 
E .  

The choice of the energy terms depends on the 
object to segment and on the image type. 

Three different terms in the internal energy have 
been introduced: a continuity one, that encourages 
the equidistance between the contour points, a cur- 
vature one, that encourages smoothness of the con- 
tour, and a balloon one, that drives the contour to 
swell up to objects boundaries. The last-mentioned 
is usefull, in our images, when the barium bolus ex- 
pands. 

Moreover, in the external energy two terms have 
been introduced: a magnitude term, attracting the 
contour to edges in the image, and an intensity term, 
attracting the contour to low intensity regions (the 
bolus is a dark area in our images). 

Once the contour w has been optimized, it then 
has to be re-sampled. The aim of this step is to im- 
prove the accuracy of the contour by imposing the 
contour points to be separated by the same distance. 
Besides, the number of the contour points can evolve 
in order to fit the dimension of the deformable ob- 
ject. 

This step plays an important part since the de- 
formable region model and the active contours mod- 
els relies on the representation of the contour of the 

where: 
dL+l (p3 is the translation vector of the point 5 from 
instant t + 1 to instant t .  

This error plays the same part than the de- 
formable region model energy, but the temporal axis 
is considered in the opposite direction (from t to t+ 1 
for the region model, and from t + 1 to t for the mo- 
tion estimation). 

The M S R E  only depends on z;+, (3 and so Or+,. 
Thus, minimising the deformable region energy 

amounts to determine the motion descriptor 0, for 
which the energy is minimum: 

OF+, = argo- min MSRER,,, 
t + 1  

The minimization is also realised by a simulated 
annealing method. 

7 Experimental Results 

We dispose, for the time being, of four sequences 
acquired on two voluntaries. The results of the bolus 
tracking on one sequence are presented in figure 2. 

The bright contour corresponds to the contour 
given after the region optimization by the de- 
formable region model. The dark contour corre- 
sponds to the optimized and re-sampled contour 
given by active contours. 



Figure 2: Results of the bolus tracking a t  instants 
t = 46, t = 59, t = 66 and t = 73 of a sequence. 

8 Conclusion 

A tracking method, that combines both region 
and contour tracking, has been presented in this pa- 
per. Its aim is to  realize a barium bolus tracking in 
radiological images sequences. 

The results have shown the efficiency of the 
method, especially when images contrast is suffi- 
cient. 

The tracking allows the measurements of param- 
eters that caracterize the lower oesophageal sphinc- 
ter, such as its length and its diameter. The fu- 
sion of these results with the ones of a swallowing 
sounds analysis will allow a better understanding of 
both the gastroesophageal reflux phenomenon and 

the origins of the sounds generated during barium 
swallowing [2]. 

At present, the means of investigation are radi- 
ological and manometric explorations. Thanks to 
our work, a non-invasive and atraumatic method en- 
tirely based on sounds recording, could be conceiv- 
able. 

References 

[I] A. A. AMINI, T .  E. WEYMOUTH and R. C. 
JAIN, Using dynamic programming for solving 
variational problems in  vision, IEEE Transac- 
tions on pattern analysis and machine intelli- 
gence, Vol. 12, No. 9, pp. 855-867, 1990. 

(21 M. BOIRON, B. ATIPO, L. PICON, P. ROULEAU 
and EH. METMAN, Esophageal swallowing phase 
assessed by audiosigr~al recordiny: Relationship 
with manometry in  gastroesopheal reflux disease, 
Dig. Dis. Scix., 44, pp. 529-545, 1999. 

[3] B. BASCLE and R. DERICHE, Region tracking 
through image sequences, Rapport de recherche 
2439, INRIA-Sophia Antipolis, 21 pages, DCcembre 
1994. 

[4] L. BONNAUD and C. LABIT, Etude d'algorithmes 
de suivi temporel de segmentation base'e mouve- 
ment pour la compression de se'quences d'images, 
Publication interne 793, IRISA-UniversitC de 
Rennes, 43 pages, Janvier 1994. 

[5] L. BONNAUD, SchCrnas de suivi d'objets vidto 
dans une se'quence anime'e: application c i  l'interpolation 
d'images interme'diaires, Thlise de doctorat, IRISA- 
UniversitC de Rennes, 1998. 

[6] A. CORANA, M. MARCHESI, C. MARTINI 
and S. RIDELLA, Minimizing multimodal vari- 
ables with the "Simulated anneuling" algorithm, 
ACM Transactions on Mathematical Software, 
Vol. 13, No. 3, pp. 262-280, September 1987. 

[7] R. E. KALMAN, A new approach to linear fil- 
tering and prediction problems, Transactions of 
the ASME- Journal of Basic Engineering, pp. 
35-45, March 1960. 

[8] M. KASS, A. WITKIN and D. TERZOPOU- 
LOS, Snakes : Active contour models, Interna- 
tional Journal of Computer Vision, Vol. l ,  pp. 
321-331, 1998. 

[9] H. NICOLAS, Hie'rurchie de moddes de mouve- 
ment et me'thodes d'estimation associe'es. Appli- 
cation au codage de se'quences d'images, Th&se 
de doctorat, IRISA-UniversitC de Rennes 1,1992. 

[lo] G. WELCH and G. BISHOP, A n  introduction 
to the Kalman Filter, http://www.cs.unc.edu/ 
Gelch/kalman/kalman-filter/kalman.htm 1997. 

(111 D.J. WILLIAMS and M. SHAH, A fast algo- 
rithm for active contours and curvature esti- 
mation, CVGIP: Image Understanding, Vol. 55, 
No. 1, pp.14-26, January 1992. 




