
MVA2000 lAPR Workshop on Machine Vision Applicat~ons. Nov. 28-30.2000. The University of Tokyo, Japan

8-1 2 Evaluation of Two Real Time Low Level Image
Processing Architectures

Stelian Persa Cristina Nicolescu Pieter Jonker
Pattern Recognition Group, Technical University Delft

Lorentzweg 1, Delft, 2628 CJ
The Netherlands
+31 152783727

{ stelian,cristina,pieter)@ph.tn.tudelft.nl

Abstract 2 The IMAP-VISION - a SIMD architecture

Thc papcr presents a study on the impact of using
SIMD (S~ngc Instn~ct~on Multiple Data) techniques and
architccturcs in low lcvel image processing. Speedups
obtained on a SIMD parallel architecture (IMAP-
VISION board) and a single Intel MMX processor
computer are presented for different low-level image
processing operators. While the IMAP-Vision system
performs better bccause of the large number of
processing elements, the MMX processor remains a
good candidate for low-level image processing.

1 Introduction

Bcca~~st. of tlic massive amounts of data involved,
computer vision algorithms can be extremely
computationally expensive. In order to make this
processing nln in real-time we need to process data in
parallel and often a great deal of optimization needs to
be utilized.

It can bc observed that most of the image
processing operators exhibit natural parallelism in the
sense that the input image data required to compute a
given area of the output is spatially localized. This high
degree of natural parallelism exhibited by most of the
low-lcvel image processing operators can be easily
exploited using SIMD parallel architectures or
techniques. A SIMD architecture consists of a linear
array of simple processors capable of applying in
parallel the same instruction on different elements of
the data.

The paper is organized as follows. Section 2
describes a SIMD architecture - the IMAP-VISION
board. Section 3 presents the way in which a SIMD
technique was integrated into the MMX technology of
Intel processors, and how to get most speed out of
MMX. Execution times and implementations of
different low-level image processing operators
computed on both architectures (SIMD and MMX
processor) arc prescnted in Section 4. Section 5
concludes thc paper.

IMAP-VISION is a SIMD Linear Processor Array
(LPA) on a PC1 board. It is a parallel architecture for
real-time image processing, that includes a high level
language for data parallel programming: IDC (One
Dimensional C). The IMAP-VISION card contains 256
8-bit Processing Elements (PEs), controlled by a 16-bit
Control Processor (CP) and has 10 GIPS peak
performance.

Although the IMAP chip has high levels of
computational ability by integrating one-dimensional
SIMD processors on a single chip, its on-chip memory
is sometimes insufficient for flexible execution of
complex algorithms. For that reason the IMAP-VISION
board has a high bandwidth external memory with an
efficient data transfer mechanism. The bus controller
allows the host PC to access data not only in data
memory, but also in on-chip memory and the external
memory without collisions, cven when a real-time
vision computation is running. This mechanism not only
allows the host PC to collect the results created by the
processor array, but also allows thc host PC to change
the parameters in run-time easily.

IDC is designed as an enhanced C language to
support virtual LPAs. The enhancement of IDC from C
is straightforward: extended declaration of entities
which associated to the PE array (SEP or distributed
variables), extended constnlctors for selecting active
processor groups, and extended operators (like r i z i f i for
manipulating data on the PE array. To define a
distributed variable the 1DC keyword separate, or sep
can be used. A separate variable is stored in internal
memory and can have a different value on each
processor. A 256x240 image, distributed column-wise
over the PEs is defined as .sc~/)arute linsignc>d char
img[240].

To make the value of a sep variable on a specific
processor globally available it can be addressed using
the :[pe-num:] operator. The operators for acccssing
variables on other processors, :< and :>, can be used in
two ways. As a unary operator, .yep-vur- = :< sep-var;
will rotate the values ofsey-var 1 processor to the left.
As a binary operator sc)p-var = .yep-vur :< n ; will
rotate the values ofsep-vur n processors to the left.

The IMAP-VISION board comes with a MS
Windows or X window (e.g. Linux) programming
environment based on IDC, which makes this parallel
board a powerful tool. The X window based debuggers
provide not only assembly and source level debugging
facilities, but also functionality's such as interactive
ad.justment of variables and constants, which is useful
for parameter tuning in real-time imaging applications.

2.1 Algorithms Implementation in 1DC and
Optimizations

Writing a program in IDC is not very difficult, but
writing a good program is. A program that works is not
necessarily efficient. In order to write efficient, i.e.
fast, programs ccrtain guidelines should be followed.
The first is to always try to exploit parallel processing
to the maximum. If you have 256 processors you should
use all of them. The second is to avoid using nested
loops.

This sometimes necessitates a workaround, which
is not trivial. A simple but very expressive example is
thc histogram computation, which is a global image
processing operation. First every processor makes a
local histogram of the image column it has in its
memoly. Probably most people would write something
like:

for(i=O;i<256;i++)
for(i=O;j<PENO;j++)
hi.rto:[L] += tnzp[i]:[i:];

But in that case we have a nested loop in which only 1
processor is working at a time. A more efficient use of
processors would be to do a prefix addition, one of the
most basic forms of parallel programming. It uses only
log(256) = 8 steps:

for(i=O;i<256;i++){
for(i=O;j<8;j++)

t n ~ p [i] += rmp [i] : < (I <<j);
hi.sto: [i:] = tnlp[i]:[i:];}

But we can do still better. Every processor could add its
local value and then pass it on to its neighbor, which will
add its local value while the first one adds the next
value. Since the :< operator takes only one clock cycle
we don't lose any time at all. Then we find the fastest
code possible:

Performing execution timing in the debugger gives
conclusive results [5,6]:

classical histogram: 60.10 Ins
using prefix addition: 2.91 Ins
optimal program: 0.29 Ins
Another class of image processing operation is the

recursive neighborhood operations (RNO). A few
examples of RNO are the morphological operations like
the opening, closing, thinning or distance transform. For
updat~ng each pixel, RNOs refer the pixel value of its

neighborhood pixel, which have already been updated. A
parallel method for efficient implementation of RNO
can be used [7]. We use overlapping waves where each
wave is a line of activated PE. PE are activated
successively in a fixed direction, while each activated
PE updates the corresponding pixel after every fixed
time interval. A distance transform implementation in
IDC will take 8ms on an image of dimension 256 x
240.

The distributed bucket processing [8,9] (stack-
based) method is extensively used. It consists of two
processing phases during which every PE of the LPA
simulates a software stack in its local memory. In the
first phase, all pixels are visited once in order to find

with specific features such as contour pixels or
peak pixels and push them into the stack. In the second
phase we pop them and process them. In the processing
phase, we can push them back in the stack
corresponding for instance to an object contour from
where-they belongs (contour tracking operation) or we
can use them to accumulate votes like in circular Hough
transform. We further process all the pixels from the
stack till all interest PE stacks are empty. A circular
Hough transform implemented using this method will
perform in 6 to I lms. This image transform is used to
detect in real time the ball in robot soccer game using
the vision system.

3 The MMX Technology

A set of MMX routines that allow us to compare
the MMX SIMD and IMAP-VISION system has been
developed; they include some low-level and some
intermediate level image processing routines. MMX
technology for accelerating multimedia applications has
become quite commonplace in the recent months. Many
of the core requirements of multimedia processing
overlap with industrial machine vision requirements, and
so it is natural that the vision community benefits from
this new computational capacity.

Intel's MMX Technology adds several new data
types and 57 new instructions specifically designed to
manipulate and process video, audio and graphical data
more efficiently. These types of applications often use
repetitive loops that, while occupying I0 percent or less
of the overall application code, can account for up to 90
percent of the execution time. A process called Single
Instruction Multiple data (SIMD) enables one
instruction to perform the same function on multiple
pieces of data.

The new data types allow handling of 64-bit data.
This is accomplished by reassigning 64 bits of each of
the eight 80-bit floating-point registers as MMX
register. The 64-bit registers rnay be thought as eight 8-
bit bytes, four 16-bit words, two 32-bit double words,
or one 64-bit quadword [I].

A . MMX 0l)tirrrizrrrion I.rslrc,.s
MMX coding currently implies the use of

Assctnbly language. We will focus this discussion on a
couple of strategies which are impose by the
architecture and that guarantee the highest performance.
Dtrttr trlignrircnt: a misalignment access in the data cache
or on thc bus cost at least three extra clock cycles on
the Petitiutn processor. This is a serious performance
penalty if we think that an aligned memory access might
take only I cycle to execute. An 8-byte datum should be
aligned on an 8-byte boundary. Also if the code hushes
MMX registers into stack, it is necessary to replace the
entry and exit code of the procedure to ensure that the
stack is aligned too [2]. Data alignment is very
important when writing MMX code because the
execution speed can be boosted by more than 30%.

Iristrnc~tion Scliet/u/in~: to get the most speed out of
MMX, we have to think in term of instruction
scheduling. The most critical involve output operand
collision. The Pentium processor is an advanced
superscalar processor. It is built around two general-
purpose integer pipelines and a pipelined floating-point
itnit. allowing the processor to execute two integer
instructions si~nultaneously. The first logical pipe is the
U-pipe, and the sccond is the V-pipe. During decoding
of a n instnlction, next two instructions are checked,
and, if is possible, they are issued such that the first one
exccutcs in the U-pipe and the second in the V-pipe. If
this is not possible, only one instruction will be issued
to thc U-pipe and no instn~ction is issued to the V-pipe.
That mcans that the execution of two instructions in one
clock cycle might double the performance. For this
rcason is adviscd to keep both pipes busy. But we are
limited by the hardware because the Pentium has only
onc shift rcgister, only one multiplier, and only U-pipe
can cxecutc instructions that access the memory or
intcger rcgister. A short summary:

Two MMX instructions which both uses MMX
multiplier unit (pmull, pmulh, pmadd) cannot pair.
Multiply operations may be issued in either U-pipe
or V-pipe but not in the same cycle.
Two MMX instructions, which both uses MMX
shiftcr unit (pack, unpack, and shift instruction),
cannot pair.
MMX instructions, which access either memory or
integer, register can be issued in the U-pipe only.

R. Trrtiirig MMX c.o~lc
This section presents the loop variables reduction,

loop unrolling and loop interleaving techniques. One
optimization is to consider elimination of an inner loop.
For loops are complex structures requiring counter
variable. Counter variables place an additional strain on
the CPU register pool, which in the Intel architecture is
uncolnfortably small. Using a pointer increment with an
end-of-line limit greatly increases speed since the
incrementing pointer is also the counter loop. Usually
the MMX code consists of short loop iterated many
times ovcr an array of data. Often there is no

relationship between two iterations of the same loop, so
the output of the second iteration does not depend on
the output of the first. Having calculated the highest
nulnber of iteration that can be executed in parallel (N),
the loop can be unrolled by N and then instructions can
be moved around to maximize the use of both pipelines:

MMX instructions that access memory are always
executed in the U-pipe, so it is better to spread
them around and try to exploit the V-pipe with ALU
or shift instructions.
Two shift or multiply instructions cannot be issued
in the same cycle. We can introduce a small delay
between the iterations, so that the group of MMX
instructions that are physically near belong to
different stages of their respective iterations.

For operations on binary images like noise filter on
binary image, morphological operations or
measurements on binary images we can pack the image.
In this way 64 pixels will fit in a single MMX register
and if we can gain advantage from loop interleaving
optimization and issue 2 operations in one cycle, we can
process 128 pixels at once. Since a typical image is 256
x 256, the use of one bit pcr pixel shrinks the output
data down to 8k bytes, allowing a more efficient use of
the Pentiurn's L1 cache memory. Unfortunately this
packing process requires quite a lot of instructions to
be implemented, and an additional phase of bit
swapping. Also careful instruction scheduling is
required due to the limitations on the use of shift
instructions: only one shift operation can be issued in
each clock cycle.

3.1 MMX Image Processing implementation
and benchmarks

An interesting problem is how to measure the
execution time of MMX routine. This could be done
using the information from RDTSC (real time stamp
counter) which contains the cycle counter. The detailed
description of the RDTSC counter may be find in [3].
The measured timing is approximate and depends on
many factors as OS overheads, number of processes
running, cash situation if MMX code contains
readlwrite instructions, etc. Various conditions, as
cache warming prior reading or writing fromlto the
same memory blocks, a particular write strategy
implemented in the processor and L2 cache, most
significantly affect the performance. For that reasons
we need to carefully consider the results and run
multiple test and average out the results excluding the
values far from the mean, which may occur due to a
particular running condition.

4 Implementation and Results

Due to the succinct language design and the RISC
like instruction-set of IMAP-VISION, the IDC
compiler has achieved codes competitive with hand-
written asselnbly code as can be seen in table 1 .

Table I. I DC compiler performance

Because of this we will use in comparison the code
written in IDC. The assembly should be used only to
optimize the most time consuming parts of the code.

Also for complicate algorithms we used MMX
technology intrinsics developed by Intel. lntrinsics are
highly optimized routines written in assembly, from
which the compiler generates inline code. The intrinsics
allow for relative quick prototyping of code and is much
easier to maintain than assembly. On the other hand only
Intel compiler supports this technique and the
performance is about 1525% slower than equivalent
assembly code.

In table 2 we make a comparison of the execution
times between MMX code on a single Pentium I1
300MHz processor and IDC on IMAP-VISION system.
We used in our measurements a 256 x 256, 8 bits per
pixel image.

Ratio

1.15

1.21

1.13

Algorithm

Average
filter

Histogram

Rotation 90
deg.

Table 2. MMX versus IMAP-VISION timings

Assembly
code steps

5600

4039

20696

5 Conclusions

Compiler
code steps

6430

4872

23326

IMAP-VISION

0.03hms

0. I ms
0.04ms
O.09ms

0.071ns

'0 .42ms

0.41ns

0 .65 ms

0.29ms

0.31 lns

Operation
Type
Image

Binarization
Images add
Image mean

Image
Multiplication

Images Bit
A 11 tl

Convolution
3x3 kernel
Sobel Edge
Detection

Image
Variance

Histogl.am

Dilatioti

Low level image processing performs very well on
a single MMX processor architecture. The IMAP-
VISION still performs in average 10 times faster,
mostly because it has 256 PE. The drawback of the
IMAP-VISION system is the 40MHz operating
frequency. Also, both systems have a major drawback.
The IMAP-VISION system has no floating point
operations, and within MMX code we cannot use

MMX PI1
300MHz

0.3ms

0.51ns
0.9 ms
I. lms

0.8ms

5.5111s

2.4111s

14.8ms

10,hms

12,4ms

floating point (FP) operations either (in fact we can, but
the cost is 50 processor cycles to switch between FP
mode and MMX mode).

In this study we do not take into account the
acquisition and the transfer time. We can mention that
we can expect that the IMAP will perform far better
because the bandwidth between on-chip and external
memory is 1.28Gyte/s, which enables the transfer of
644 frames in 33.3ms (the NTSC frame rate).

While the IMAP-Vision system performs better
because of the large number of processing elements,
the MMX processor remains a good candidate for low-
level image processing, if we take into account also the
price.

ACKNOWLEDGMENTS
This work was done in the framework of Ubiquitous
Communications Program (www.ubicom.tudelft.nl).

REFERENCES
[I] Intel Corporation, Intel Architecture MMX

Technology Developer's Manual, Intel Corporation
1997. Available at http://www.intel.com.

[2] Intel Corporation, MMX Technology Programmers
Reference Manual, Intel Corporation 1997.
Available at http://www.intel.com.

[3] Intel Corporation, Using the RDTSC Instruction for
Performance Monitoring, Available at
http://developer.intel.com/drg/pentiumlI/appnotes/
RDTSCPM I .HTM.

[4] Y. Fujita et al., IMAP-VISION: An SlMD Processor
with High-Speed On-chip Memory and Large
Capacity External Memory, Proc. of IAPR
Workshop on Machine Vision Applications (MVA),
pp. 170-1 73, 1996.

[5] S. Kyo and K. Sato, Efficient Implementation of
Image Processing Algorithms on Linear Processor
Arrays using the Data Parallel Language IDC, Proc.
of IAPR Workshop on Machine Vision
Applications (MVA), pp. 160- 165, 1996.

[6] M. van der Molen and S. Kyo, Reference guide for
the IMAP-VISION assembly language, NEC
Incubation Center, 1997.

[7] P. P. Jonker, Architectures for Multidimensional
Low- and Intermediate Level Image Processing,
Proc. of IAPR Workshop on Machine Vision
Applications (MVA), pp.307-3 16, 1990.

[8] J.G.E. Olk and P.P. Jonker, Bucket processing: A
paradigm for image processing, ICPR13, Proc.
13th Int. Conf. on Pattern Recognition (Vienna,
Austria, Aug.25-29) Vol. 4, IEEE Computer
Society Press, Los Alamitos

[9] J.G.E. Olk and P.P. Jonker, Parallel image
processing using distributed arrays of buckets,
Pattern Recognition and Image Analysis, vol. 7, no.
1.1997

