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Abstract 2 The IMAP-VISION - a SIMD architecture 

Thc papcr presents a study on the impact of using 
SIMD (S~ngc  Instn~ct~on Multiple Data) techniques and 
architccturcs in low lcvel image processing. Speedups 
obtained on a SIMD parallel architecture (IMAP- 
VISION board) and a single Intel MMX processor 
computer are presented for different low-level image 
processing operators. While the IMAP-Vision system 
performs better bccause of the large number of 
processing elements, the MMX processor remains a 
good candidate for low-level image processing. 

1 Introduction 

Bcca~~st.  of tlic massive amounts of data involved, 
computer vision algorithms can be extremely 
computationally expensive. In order to make this 
processing nln in real-time we need to process data in 
parallel and often a great deal of optimization needs to 
be utilized. 

It can bc observed that most of the image 
processing operators exhibit natural parallelism in the 
sense that the input image data required to compute a 
given area of the output is spatially localized. This high 
degree of natural parallelism exhibited by most of the 
low-lcvel image processing operators can be easily 
exploited using SIMD parallel architectures or 
techniques. A SIMD architecture consists of a linear 
array of simple processors capable of applying in 
parallel the same instruction on different elements of 
the data. 

The paper is organized as follows. Section 2 
describes a SIMD architecture - the IMAP-VISION 
board. Section 3 presents the way in which a SIMD 
technique was integrated into the MMX technology of 
Intel processors, and how to get most speed out of 
MMX. Execution times and implementations of 
different low-level image processing operators 
computed on both architectures (SIMD and MMX 
processor) arc prescnted in Section 4. Section 5 
concludes thc paper. 

IMAP-VISION is a SIMD Linear Processor Array 
(LPA) on a PC1 board. It is a parallel architecture for 
real-time image processing, that includes a high level 
language for data parallel programming: IDC (One 
Dimensional C). The IMAP-VISION card contains 256 
8-bit Processing Elements (PEs), controlled by a 16-bit 
Control Processor (CP) and has 10 GIPS peak 
performance. 

Although the IMAP chip has high levels of 
computational ability by integrating one-dimensional 
SIMD processors on a single chip, its on-chip memory 
is sometimes insufficient for flexible execution of 
complex algorithms. For that reason the IMAP-VISION 
board has a high bandwidth external memory with an 
efficient data transfer mechanism. The bus controller 
allows the host PC to access data not only in data 
memory, but also in on-chip memory and the external 
memory without collisions, cven when a real-time 
vision computation is running. This mechanism not only 
allows the host PC to collect the results created by the 
processor array, but also allows thc host PC to change 
the parameters in run-time easily. 

IDC is designed as an enhanced C language to 
support virtual LPAs. The enhancement of IDC from C 
is straightforward: extended declaration of entities 
which associated to the PE array (SEP or distributed 
variables), extended constnlctors for selecting active 
processor groups, and extended operators (like r i z i f i  for 
manipulating data on the PE array. To define a 
distributed variable the 1DC keyword separate, or sep 
can be used. A separate variable is stored in internal 
memory and can have a different value on each 
processor. A 256x240 image, distributed column-wise 
over the PEs is defined as .sc~/)arute linsignc>d char  
img[240].  

To make the value of a sep variable on a specific 
processor globally available it can be addressed using 
the :[pe-num:] operator. The operators for acccssing 
variables on other processors, :< and :>, can be used in 
two ways. As a unary operator, .yep-vur- = :< sep-var; 
will rotate the values ofsey-var 1 processor to the left. 
As a binary operator sc)p-var = .yep-vur :< n ;  will 
rotate the values ofsep-vur n processors to the left. 



The IMAP-VISION board comes with a MS 
Windows or X window (e.g. Linux) programming 
environment based on IDC, which makes this parallel 
board a powerful tool. The X window based debuggers 
provide not only assembly and source level debugging 
facilities, but also functionality's such as interactive 
ad.justment of variables and constants, which is useful 
for parameter tuning in real-time imaging applications. 

2.1 Algorithms Implementation in 1DC and 
Optimizations 

Writing a program in IDC is not very difficult, but 
writing a good program is. A program that works is not 
necessarily efficient. In order to write efficient, i.e. 
fast, programs ccrtain guidelines should be followed. 
The first is to always try to exploit parallel processing 
to the maximum. If you have 256 processors you should 
use all of them. The second is to avoid using nested 
loops. 

This sometimes necessitates a workaround, which 
is not trivial. A simple but very expressive example is 
thc histogram computation, which is a global image 
processing operation. First every processor makes a 
local histogram of the image column it has in its 
memoly. Probably most people would write something 
like: 

for(i=O;i<256;i++) 
for(i=O;j<PENO;j++) 
hi.rto:[L] += tnzp[i]:[i:]; 

But in that case we have a nested loop in which only 1 
processor is working at a time. A more efficient use of 
processors would be to do a prefix addition, one of the 
most basic forms of parallel programming. It uses only 
log(256) = 8 steps: 

for(i=O;i<256;i++){ 
for(i=O;j<8;j++) 

t n ~ p  [i] += rmp [i] : < ( I <<j); 
hi.sto: [i:] = tnlp[i]:[i:];} 

But we can do still better. Every processor could add its 
local value and then pass it on to its neighbor, which will 
add its local value while the first one adds the next 
value. Since the :< operator takes only one clock cycle 
we don't lose any time at all. Then we find the fastest 
code possible: 

Performing execution timing in the debugger gives 
conclusive results [5,6]: 

classical histogram: 60.10 Ins 
using prefix addition: 2.91 Ins 
optimal program: 0.29 Ins 
Another class of image processing operation is the 

recursive neighborhood operations (RNO). A few 
examples of RNO are the morphological operations like 
the opening, closing, thinning or distance transform. For 
updat~ng each pixel, RNOs refer the pixel value of its 

neighborhood pixel, which have already been updated. A 
parallel method for efficient implementation of RNO 
can be used [7]. We use overlapping waves where each 
wave is a line of activated PE. PE are activated 
successively in a fixed direction, while each activated 
PE updates the corresponding pixel after every fixed 
time interval. A distance transform implementation in 
IDC will take 8ms on an image of dimension 256 x 
240. 

The distributed bucket processing [8,9] (stack- 
based) method is extensively used. It consists of two 
processing phases during which every PE of the LPA 
simulates a software stack in its local memory. In the 
first phase, all pixels are visited once in order to find 

with specific features such as contour pixels or 
peak pixels and push them into the stack. In the second 
phase we pop them and process them. In the processing 
phase, we can push them back in the stack 
corresponding for instance to an object contour from 
where-they belongs (contour tracking operation) or we 
can use them to accumulate votes like in circular Hough 
transform. We further process all the pixels from the 
stack till all interest PE stacks are empty. A circular 
Hough transform implemented using this method will 
perform in 6 to I lms. This image transform is used to 
detect in real time the ball in robot soccer game using 
the vision system. 

3 The MMX Technology 

A set of MMX routines that allow us to compare 
the MMX SIMD and IMAP-VISION system has been 
developed; they include some low-level and some 
intermediate level image processing routines. MMX 
technology for accelerating multimedia applications has 
become quite commonplace in the recent months. Many 
of the core requirements of multimedia processing 
overlap with industrial machine vision requirements, and 
so it is natural that the vision community benefits from 
this new computational capacity. 

Intel's MMX Technology adds several new data 
types and 57 new instructions specifically designed to 
manipulate and process video, audio and graphical data 
more efficiently. These types of applications often use 
repetitive loops that, while occupying I0 percent or less 
of the overall application code, can account for up to 90 
percent of the execution time. A process called Single 
Instruction Multiple data (SIMD) enables one 
instruction to perform the same function on multiple 
pieces of data. 

The new data types allow handling of 64-bit data. 
This is accomplished by reassigning 64 bits of each of  
the eight 80-bit floating-point registers as MMX 
register. The 64-bit registers rnay be thought as eight 8- 
bit bytes, four 16-bit words, two 32-bit double words, 
or one 64-bit quadword [I]. 



A .  MMX 0l)tirrrizrrrion I.rslrc,.s 
MMX coding currently implies the use of 

Assctnbly language. We will focus this discussion on a 
couple of strategies which are impose by the 
architecture and that guarantee the highest performance. 
Dtrttr trlignrircnt: a misalignment access in the data cache 
or on thc bus cost at least three extra clock cycles on 
the Petitiutn processor. This is a serious performance 
penalty if we think that an aligned memory access might 
take only I cycle to execute. An 8-byte datum should be 
aligned on an 8-byte boundary. Also if the code hushes 
MMX registers into stack, it is necessary to replace the 
entry and exit code of the procedure to ensure that the 
stack is aligned too [2]. Data alignment is very 
important when writing MMX code because the 
execution speed can be boosted by more than 30%. 

Iristrnc~tion Scliet/u/in~: to get the most speed out of 
MMX, we have to think in term of instruction 
scheduling. The most critical involve output operand 
collision. The Pentium processor is an advanced 
superscalar processor. It is built around two general- 
purpose integer pipelines and a pipelined floating-point 
itnit. allowing the processor to execute two integer 
instructions si~nultaneously. The first logical pipe is the 
U-pipe, and the sccond is the V-pipe. During decoding 
of a n  instnlction, next two instructions are checked, 
and, if is possible, they are issued such that the first one 
exccutcs in the U-pipe and the second in the V-pipe. If 
this is not possible, only one instruction will be issued 
to thc U-pipe and no instn~ction is issued to the V-pipe. 
That mcans that the execution of two instructions in one 
clock cycle might double the performance. For this 
rcason is adviscd to keep both pipes busy. But we are 
limited by the hardware because the Pentium has only 
onc shift rcgister, only one multiplier, and only U-pipe 
can cxecutc instructions that access the memory or 
intcger rcgister. A short summary: 

Two MMX instructions which both uses MMX 
multiplier unit (pmull, pmulh, pmadd) cannot pair. 
Multiply operations may be issued in either U-pipe 
or V-pipe but not in the same cycle. 
Two MMX instructions, which both uses MMX 
shiftcr unit (pack, unpack, and shift instruction), 
cannot pair. 
MMX instructions, which access either memory or 
integer, register can be issued in the U-pipe only. 

R. Trrtiirig MMX c.o~lc 
This section presents the loop variables reduction, 

loop unrolling and loop interleaving techniques. One 
optimization is to consider elimination of an inner loop. 
For loops are complex structures requiring counter 
variable. Counter variables place an additional strain on 
the CPU register pool, which in the Intel architecture is 
uncolnfortably small. Using a pointer increment with an 
end-of-line limit greatly increases speed since the 
incrementing pointer is also the counter loop. Usually 
the MMX code consists of short loop iterated many 
times ovcr an array of data. Often there is no 

relationship between two iterations of the same loop, so 
the output of the second iteration does not depend on 
the output of the first. Having calculated the highest 
nulnber of iteration that can be executed in parallel (N), 
the loop can be unrolled by N and then instructions can 
be moved around to maximize the use of both pipelines: 

MMX instructions that access memory are always 
executed in the U-pipe, so it is better to spread 
them around and try to exploit the V-pipe with ALU 
or shift instructions. 
Two shift or multiply instructions cannot be issued 
in the same cycle. We can introduce a small delay 
between the iterations, so that the group of MMX 
instructions that are physically near belong to 
different stages of their respective iterations. 

For operations on binary images like noise filter on 
binary image, morphological operations or 
measurements on binary images we can pack the image. 
In this way 64 pixels will fit in a single MMX register 
and if we can gain advantage from loop interleaving 
optimization and issue 2 operations in one cycle, we can 
process 128 pixels at once. Since a typical image is 256 
x 256, the use of one bit pcr pixel shrinks the output 
data down to 8k bytes, allowing a more efficient use of 
the Pentiurn's L1 cache memory. Unfortunately this 
packing process requires quite a lot of instructions to 
be implemented, and an additional phase of bit 
swapping. Also careful instruction scheduling is 
required due to the limitations on the use of shift 
instructions: only one shift operation can be issued in 
each clock cycle. 

3.1 MMX Image Processing implementation 
and benchmarks 

An interesting problem is how to measure the 
execution time of MMX routine. This could be done 
using the information from RDTSC (real time stamp 
counter) which contains the cycle counter. The detailed 
description of the RDTSC counter may be find in [3]. 
The measured timing is approximate and depends on 
many factors as OS overheads, number of processes 
running, cash situation if MMX code contains 
readlwrite instructions, etc. Various conditions, as 
cache warming prior reading or writing fromlto the 
same memory blocks, a particular write strategy 
implemented in the processor and L2 cache, most 
significantly affect the performance. For that reasons 
we need to carefully consider the results and run 
multiple test and average out the results excluding the 
values far from the mean, which may occur due to a 
particular running condition. 

4 Implementation and Results 

Due to the succinct language design and the RISC 
like instruction-set of IMAP-VISION, the IDC 
compiler has achieved codes competitive with hand- 
written asselnbly code as can be seen in table 1 .  



Table I. I DC compiler performance 

Because of this we will use in comparison the code 
written in IDC. The assembly should be used only to 
optimize the most time consuming parts of the code. 

Also for complicate algorithms we used MMX 
technology intrinsics developed by Intel. lntrinsics are 
highly optimized routines written in assembly, from 
which the compiler generates inline code. The intrinsics 
allow for relative quick prototyping of code and is much 
easier to maintain than assembly. On the other hand only 
Intel compiler supports this technique and the 
performance is about 1525% slower than equivalent 
assembly code. 

In table 2 we make a comparison of the execution 
times between MMX code on a single Pentium I1 
300MHz processor and IDC on IMAP-VISION system. 
We used in our measurements a 256 x 256, 8 bits per 
pixel image. 

Ratio 

1.15 

1.21 

1.13 

Algorithm 

Average 
filter 

Histogram 

Rotation 90 
deg. 

Table 2. MMX versus IMAP-VISION timings 

Assembly 
code steps 

5600 

4039 

20696 

5 Conclusions 

Compiler 
code steps 

6430 

4872 

23326 

IMAP-VISION 

0.03hms 

0. I ms 
0.04ms 
O.09ms 

0.071ns 

'0 .42ms 

0.41ns 

0 .65  ms 

0.29ms 

0.31 lns 

Operation 
Type 
Image 

Binarization 
Images add 
Image mean 

Image 
Multiplication 

Images Bit 
A 11 tl 

Convolution 
3x3 kernel 
Sobel Edge 
Detection 

Image 
Variance 

Histogl.am 

Dilatioti 

Low level image processing performs very well on 
a single MMX processor architecture. The IMAP- 
VISION still performs in average 10 times faster, 
mostly because it has 256 PE. The drawback of the 
IMAP-VISION system is the 40MHz operating 
frequency. Also, both systems have a major drawback. 
The IMAP-VISION system has no floating point 
operations, and within MMX code we cannot use 

MMX PI1 
300MHz 

0.3ms 

0.51ns 
0.9 ms 
I. lms  

0.8ms 

5.5111s 

2.4111s 

14.8ms 

10,hms 

12,4ms 

floating point (FP) operations either (in fact we can, but 
the cost is 50 processor cycles to switch between FP 
mode and MMX mode). 

In this study we do not take into account the 
acquisition and the transfer time. We can mention that 
we can expect that the IMAP will perform far better 
because the bandwidth between on-chip and external 
memory is 1.28Gyte/s, which enables the transfer of 
644 frames in 33.3ms (the NTSC frame rate). 

While the IMAP-Vision system performs better 
because of the large number of processing elements, 
the MMX processor remains a good candidate for low- 
level image processing, if we take into account also the 
price. 
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