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Abstract 

This paper explores the possibility of a linear model 
as a solution to the problem of appearance-based pose 
estimation. The parametric eigenspace method (or its 
extensions that are based on correlation between images) 
has been widely used and yields successful results for the 
pose estimation problem. On the other hand, the method 
has some problems. One is that large computational cost 
and storage space are required. Another is that small 
changes in appearance can be discarded even if it is re- 
lated to changes of parameters to be estimated. Based 
on these, another appearance-based method for estimat- 
ing pose of an object using a linear model is examined. 
Experimental results are not superior to the eigenspace 
method in terms of estimation accuracy. However, it has 
several advantages to the parametric eigenspace method 
in terms of storage space and computational cost, and has 
several features that can be advantages to the eigenspace 
method. 

1 Introduction 

The parametric eigenspace method proposed by 
Murase and Nayar has led to a wide range of success- 
ful applications [I]. Although it was originally proposed 
for the problem of estimating the pose of an object from 
its appearance, it has been widely used for more general 
purposes to estimate physical parameters underlying in 
appearance of an object or a scene. (In [I], the prob- 
lem of object recognition as well as pose estimation is 
treated; the process of object recognition is followed by 
the process of pose estimation. The focus of this paper is 
on the part of pose estimation after object recognition is 
completed.) At least formally, the problem can be writ- 
ten as follows: when the image x and some physical pa- 
rameters p have a certain unknown relation, x = x ( ~ ) ,  es- 
timate p for a given x. The relationship x = x(p), which 
is usually nonlinear, is learned using a training set of N 
samples, {(xi, pi) I i = 1,.  . . , N ) .  

The parametric eigenspace method is a correlation- 
based method. Its name comes from that images are rep- 
resented in their eigenspace for data compression, and 
the data compression by the eigenspace itself has noth- 
ing to do with improvement of estimation accuracy. The 

process of estimating parameters is summarized as fol- 
lows: when an image x is given, the estimation for p is 
determined from the samples, {(xi, pi) I i = 1,. . . , N}, in 
a way that the nearest samples are first chosen and then 
the parameter is interpolated using the parameter val- 
ues of the nearest samples (pi) based on the difference 
in appearances. The reason why such appearance-based 
method works well is because appearances of an object 
for two close poses are usually close to each other, and 
the changes in appearance due to pose changes is contin- 
uous. 

Although it will not contribute in a positive way of 
improving estimation accuracy of parameters, the data 
compression using eigenspace is crucial for real imple- 
mentations, since storing samples and computing differ- 
ences between samples as raw images are exhaustive. 
Due to this necessity of the data compression, the para- 
metric eigenspace method becomes feasible, and at the 
same time, it has several problems. 

One is discard of image information that is possi- 
bly valuable for estimating the pose parameters. The 
eigenspace is a subspace constructed based only on ap- 
pearances of the samples and it has no relation to the pa- 
rameter values of the samples. A sample is given in the 
form (xi, pi), and therefore each xi is "labeled" by the 
parameter pi. However, the eigenspace is constructed 
without using this. It is possible that the parameters 
do change and nevertheless corresponding appearance 
change is small. In such a case, it is important to ex- 
tract that small appearance change in order to estimate 
the parameters correctly. However, such small appear- 
ance change can be neglected in the eigenspace if appear- 
ance change due to other parameter change is dominant 
in the samples. This is similar to the discussion in the 
problem of the object recognition that the feature space 
should be chosen so that the distance between classes be- 
comes maximum [2]. 

The other is the problem of large computational cost 
and storage space. Although we can reduce them by rep- 
resenting samples in the eigenspace, it can be still large 
when plural parameters are to be learned and estimated. 
For example, when 3 parameters are to be estimated and 
100 poses for each parameter have to be learned, the 
number of total samples is loo3. Due to data compres- 
sion by eigenspace, it becomes feasible to store such a 



large number of samples in memory and to access them. 
Nevertheless, they are still large. (Even if the dimension Table 1 : Comparison between the parametric eigenspace 

of the eigenspace is reduced to 10, 100" I0 floating method and the present method. L  is the dimension of the 

point numbers have to be stored in memory.) eigenspace. *) The case for the nearest neighbor search 
algorithm. Taking these problems into account, we present an- 

other way of estimating object pose from its appearance. 
The present method is based on a linear model of the re- I Eigenspace Method 1 Linear Model 

suggestive. 

lation between appearance and the pose parameters. Al- Storage Space I N L + M L  
though i t  is fairly simple and thus it seems trivial, we Comput. Cost I N L  + ML* 

2 Possibility of linear models 

M K  
M K  

In this section, yet another appearance-based method 
is presented. The parameters p = [pl , . . . ,pKIT are esti- 
mated based on a linear model: 

think that the associated problems are interesting and 

Taking a training set of N  samples, {(x,,pi) I i = 
1 , .  . . , N), we determine wj  so that the above model 
holds for the samples. Clearly w ,  is determined as a so- 
lution to the following equation: 

where pi, denotes the jth element of the vector pi, i.e., 
the jth parameter of the ith sample. 

The number of image pixels, M ,  is always large 
( 10,000 - 100,000). The number of the samples, N ,  
is generally much smaller than M .  (It is impossible to 
prepare as many sample images as M!) Thus, M >> N .  
Therefore, the number of unknowns is larger than that of 
equations, and an infinite number of solutions can exist. 
In many possible solutions, we choose w, so that lwjl 
is minimum. Let X be [xl , . . . ,xNIT. Such a solution is 
represented as w, = Xd,  using d ,  that satisfies 

If the square matrix X ~ X  is nonsingular, w j  is written by 

Then, using this w,, the parameter for given x is esti- 
mated by Eq.(l). The determination of wi and the esti- 
mation of pi  are conducted for each j. 

Whether XTX is nonsingular or not is entirely de- 
pendent on the set of the sample images. Since the 
correlation between the sample images is usually high, 
the eigenvalues of XTX are biased; only a small num- 
ber of eigenvalues are dominant. This is a basis for 
the eigenspace method. However, we have confirmed 
through experiments that even the smallest eigenvalue 
does not become zero in usual situations. Of course, 
if different samples have the same appearance, then 0 

eigenvalue occurs and XTX becomes singular. In this 
case, however, estimating parameters from appearance 
is impossible in principle. Furthermore, the bias of the 
eigenvalues is almost due to the resemblance of neigh- 
boring sample images. Although neighboring sample 
images are close with each other, corresponding parame- 
ters are also close with each other. Therefore, w j  satisfy- 
ing Eq.(2) usually exists. (Only by an experiment using 
real images, this can be examined.) 

The present method has an advantage to the 
eigenspace method in terms of storage space and compu- 
tational cost. Table 1 shows the comparison. ( L  denotes 
the dimension of the eigenspace.) In the eigenspace 
method, each sample is stored as a look-up table (called 
the appearance manifold in [ I ] )  in the eigenspace, and 
therefore the storage space required is usually larger. The 
storage space required for samples is order of N L .  Along 
with that for the base vectors of the eigenspace, the to- 
tal space required is N L +  M L .  Although this space is 
much smaller than storing samples as raw images, the 
storage space required is still not small, since a large 
number of samples are usually necessary. (Murase et al. 
aimed at reduction of the storage space using a spline 
surface fit.) Besides, computational cost is not small. 
If the nearest neighbor search algorithm is employed, it 
amounts to N L  + M L .  Several methods for reducing this 
cost have been proposed, one of which is to use a neu- 
ral network learning the nonlinear appearance manifold. 
It is not clear, however, that such a usage of neural net- 
works is definitely superior to the linear model we have 
described. On the other hand, the present linear method 
does not require such a look-up table; storage space as 
well as computational cost is basically M  for each pa- 
rameter. 

3 Experimental results 

We show here experiments of estimating pose of an 
object using three objects shown in Fig.3. For each of 
the objects, 1760 images of 160 x 120 pixels under dif- 
ferent poses were taken. The pose of the objects is rep- 
resented by the polar and azimuthal angles, q and £ .  To 
acquire samples, a turntable is used for changing £ and 
a robot hand is used for changing q .  A CCD camera is 
mounted on the robot hand and takes images. The sam- 
ples are obtained by changing f from 0 to 330 degrees 



Figure 1 :  Three objects used for the experiments: 
DUCK, POT, and CAP. The first and the last images in 
the samples are shown for each object. 

by 3 degrees, and by changing q from 32 to 80 degrees 
by 3 degrees. For each object. the number of samples is 
110 x 16 = 1760. 

Since appearance for f = 0 degree and appearance 
for f = 360 degrees are the same, using f directly for 
learning and estimation leads to a problem. Therefore, 
we employ a redundant expression of the parameters: 

Figure 2: Coefficient vectors for the DUCK sequence 
that corresponds to q ,  sin f , and cos f , respectively. 

accuracy for a novel image that is different from any im- 
age in a training set. This might be due to the nature of 
the relation between the pose of an object and its appear- 
ance; the correlation between the images associated with 
near pose parameters is high and continuously changes 
with the change of parameters. 

As shown in the last section, the linear method has 
generalization ability, although it is a bit inferior to that 
of the eigenspace method. In the case where the size 
of a training set is smaller than the dimensionality of the 
feature space, it is known that a phenomenon called over- 
training occurs. In our problem, the size of training set 
(e.g., 222) is much smaller than the number of image 
pixels (e.g., 160 x 120). It seems that the same problem 
should occur. 

Several studies on overtraining have been done and 

Thus, three parameters are to be estimated and are asso- some results have been obtained so far. One of them 

ciated with w , ,  w2, and w3, respectively. which seems to be closely related to our problem is one 

We divided the obtained samples into two sets. One that assumes the following model: 

is a training set used for learning, i.e., for determining 
w, and the other is a test set used for testing the gener- 
alization ability. The training set is chosen so that f and 
q varies by 9 degrees. Thus, the number of the samples 
for learning is 37 x 6 = 222. For this learning set, wi  are 
determined by Eq.(4) and they are shown in Fig.2. 

Figure 3 shows the errors of the pose estimation for all 
samples including the training set. They show the errors 
of the angle in degree between the estimated pose and the 
true pose. It can be seen that the pose is estimated with 
reasonable accuracy for overall samples. However, the 
results are not superior to the eigenspace method in terms 
of estimation accuracy. It is expected that the paramet- 
ric eigenspace method should yield a bit more accurate 
results. 

4 Discussion on overtraining 

The parametric eigenspace method has generalization 
ability. It is able to estimate parameters with reasonable 

where n is noise. The parameter pi is assumed to be 
derived according to this model. To be estimated is wi  
but its true value cannot be obtained. Then, its estima- 
tion, Gj ,  is determined in the same way as Eq.(4) from a 
training set {(xi, p) , ) .  It is shown that if the dimension- 
ality of x is larger than the size of the training set, then 
ivj  is affected by the noise 11 and as a result, the gener- 
alization error increases with the size of the training set. 
In our problem, however, the pose parameter pi can be 
known precisely and its observation can be made without 
noise in the step of acquiring the training set. Of course, 
the relation between the image x and the pose parame- 
ters p is nonlinear and cannot be completely represented 
by a linear model. However, it does not seem true that 
the noise in Eq.(6) accounts for the difference between 
the linear model and the nonlinear relation. Therefore, it 
does not seem that the above result is applicable to our 
problem without modifications. It seems that the nature 
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Figure 3: Pose error for DUCK, POT, and CAP (upper to 
lower row). 

of the natural images that the appearance continuously 
changes with changes in object pose plays an important 
role. This needs to be explored. 

In order to examine the generalization ability of the 
linear model, we tested the estimation for noisy images. 
For the DUCK image sequence, using w,  that is deter- 
mined for the training set of images without noise (the 
same images as the results shown in Fig.3). pose esti- 
mation is conducted for a test set of images to which 
uniform noise is added. Uniform noise is added to each 
pixel's brightness of the image. The results are shown in 
Fig.4. The noise level is f 5% and f 10% of the maximal 
image brightness. It can be seen that despite of consid- 
erably high noise level, it does not severely affect the 
results. 

5 Conclusion 

The possibility of a linear model as a solution to the 
problem of pose estimation from appearance of objects 
is examined. The results are inferior to the results that 
iire expected to be obtained by the eigenspace method in 
terms of estimation accuracy. On the other hand, the lin- 
ear model has an advantage that is clearly recognizable. 
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Figure 4: Pose estimation error for noisy images. Added 
noise is 5% (upper) and 10% (lower). 

It is that both storage space and computational cost re- 
quired are less than the eigenspace method. Furthermore, 
the linear model uses the pose parameters in the training 
process and can make full use of image information that 
the eigenspace method might discard through the data 
compression. 

Several cases that might be a problem for the 
eigenspace method can be listed. One example is the 
case where the target object has only slightly different 
appearances for more than two poses. For example, there 
can be an object such that the front appearance resembles 
the backside one. If appearance viewed from any other 
angle is much different from the front and the backside 
one, it is possible that the small difference in appearance 
between the front and backside is not sufficiently repre- 
sented in the eigenspace. This might be a problem for 
accurate estimation. Another example is the case where 
there are two parameters and the appearance changes 
due to one parameter are much larger than those due to 
the other parameter. The parameter associated with the 
smaller appearance changes is not fully represented in 
the eigenspace. This might be also a problem. These 
need to be explored furthermore. 
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