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Abstract Using more than three shading images gives more 

This paper proposes a new method to recover the 
sign of local Gaussian curvature from multiple shading 
images (more than three). The required information 
to recover the sign of Gaussian curvature is obtained 
by applying Principal Components Analysis (PCA) 
to the normalized irradiance measurements. The sign 
of the Gaussian curvature is recovered based on t i e  
relative orientation of measurements obtained on a 
local five point test pattern to those in the 2-D sub- 
space, called the eigen plane. Using multiple shading 
images gives more correct and robust result and min- 
imizes the effect of shadows by allowing a larger area 
of visible surface to be analyzed in comparison with 
the methods using the three shading images. Fur- 
thermore, it makes this method be applicable to the 
specular surface object where it is impossible for the 
previous method to recover the sign of the Gaussian 
curvature. On the other hand, since PCA removes a 
high degree of correlation between each image, this 
method can keep result high quality even when the 
light source directions are not widely dispersed. 

1 Introduction 

Sign of Gaussian curvature is a useful local descrip 
tor of 3-D object shape since it is viewpoint invariant. 
It can be useful for tasks such as pose determination 
and segmentation. Some recent papers [I]-[3] describe 
methods to recover the sign of Gaussian curvature 
from three shading images acquired under different 
conditions of illumination. 

This paper proposes a new method to recover the 
sign of local Gaussian curvature directly from mul- 
tiple shading images (more than three) taken under 
different conditions of illumination. The method uses 
the information obtained by applying Principal Com- 
ponents Analysis (PCA) to the normalized irradiance 
measurements. 
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robust result than the previous methods and mini- 
mizes the effect of shadows by allowing a larger area of 
visible surface to be analyzed. Furthermore, it makes 
this method be applicable to the specular surface ob- 
ject by selecting the images for each point, assuming 
surface reflectance to be generic diffuse reflectance. 

2 Three-Dimensional Space of Im- 
age Irradiances 

In the three light sources case, the three irradiance 
measurements obtained at  each pixel are denoted by 
(El ,  Ez, E3), where E l ,  Ez and E3 are considered to 
define the axes of a 3-D right-handed coordinate sys- 
tem. For a Lambertian surface with constant albedo, 
Woodham [4] showed that scatter plot of measure- 
ments, (El, E2, E3), define a 6-degree-of-freedom el- 
lipsoid. This ellipsoid does not depend on the shape 
of the object in view nor on the relative orientation 
between object and viewer. Angelopoulou [3] showed 
that scatter plots for a variety of diffuse surfaces with 
constant albedo, including surfaces with varying de- 
grees of surface roughness, remain ellipsoid-like in that 
they have positive Gaussian curvature everywhere. 

Angelopoulou (31 also showed that the scatter plot 
for a surface with multiple distinct albedo gives mul- 
tiple distinct ellipsoid-like shapes that differ only 
in scale. Following [3], we use normalization to 
remove the effect of varying albedo. Let E' = 
(ElIIIEII, EzIIlEII, E3/11Ell). Then, the scatter plot 
of E' values produces a normalized shape of the 
ellipsoid-like plots in ( E l ,  Ez, E3) space. Normaliza- 
tion, as defined here, extends in the obvious way to 
the pdi~nensional case. 

3 Recovering Sign of Gaussian Cur- 
vature from 2-D Subspace 

3.1 2-D Subspace of Space of Normal- 
ized Image Irradiances 

Let Y be the standard mapping from the unit sur- 
face normal at  a point on a smooth object to the as- 
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Figure 1. Scatter Plots on Eigen Plane for 
Lambertian Sphere 

sociat,ed point on the Gaussian sphere. The  sign of lo- 
cal Gaussian curvature and the location of the points 
mapped by Y correspond each other. 

For given conditions of illumination, let @ be the 
mapping from a point on the Gaussian sphere t o  the p 
dimensional space of normalized irradiance measure- 
ments. For suitably illuminated points, @ is invertible 
since the p t u p l e  of image irradiances is different for 
each different surface nornlal. 

The novel idea is to  use Principal Components 
Analysis (PCA) to reduce the  dimensionality of 
the space of measurements. Each point in the  p 
dimensional mace of the normalized irradiances is 
mapped into the 2-dimensional subspace by a trans- 
formation denoted by 9. 9 selects the first two prin- 
cipal components of the original measurements. We 
call this 2-dimensional subspace the eigen plane. It is 
also noted that  PCA is a mapping that  can reduce the 
dimensionality of space with keeping the regularity of 
points in the space as  much as possible. Examples 
of scatter plot on the  eigen plane for a Lambertian 
sphere with different number of images are shown in 
Figure 1. It  is shown that  the regularity of points 
on the Gaussian sphere is preserved well on the eigen 
plane. 

For the diffuse object that  has all possible visible 
surface normal, the scatter plot on the  eigen plane is 
similar to  that  shown in Figure 1 as far as the scatter 
plot in pdimensional space of the  normalized irradi- 
ances is similar t o  that  for the sphere. While for the 
object that  does not have all possible surface gradi- 
ents, the scatter plot on the eigen plane becomes a 
part of that  shown in Figure 1, and the density of the 
scatter plot corresponds to  that  of the surface gradi- 
ent d i s t r ib~ t~ ion .  In that  sense, t o  use the plot on the 
eigen plane is sufficierit t,o recover the sign of Gaussian 
curvature of the object,. 

3.2 Two Types of Mapping 

Consider the special case that  a test object is a 
sphere. Define a image template of local five points 
consisting of a center point and top, bottom, left and 
right neighbors. Label the five points as @ for the 
center point, @ for the top neighbor, 0, @ and @ 
for the left, bottom and right neighbors respec- 
tively (in counter-clockwise order). The  correspond- 
ing points on the  eigen plane will appear either in 
count,er-clockwise or clockwise order. They will ap- 
pear in the original labelling order i f  the mapping 9 
o @ preserves the ordering of points on the sphrre. 
The ordering of points on the eigen plane deperids 
both on the light sources arrangement and on 9. 

All coordinate svstems are  acjsumed t o  be the right- 
handed coordinate s y s t e n ~ .  To argue the factor of 
light sources arrangement, three light source case is 
considered first. As far a5 the three light sources are 
arranged in counter-clockwise order with respect to  
the viewing direction, the local points in ( E l ,  E2, E3) 
space are preserved in the original labelling order[3]. 
The  preservation or reversal of the ordering of points 
depends explicitly on the ordering of the light sources 
arrangement with respect to  the viewing direction. 

With p light sources, the ordering of the corre- 
sponding points on the eigen plane also depends or1 
the light sources arrangement. Without loss of gen- 
erality, assume that  the light sources are given in 
counter-clockwise order with respect to  the  viewing 
direction (so that  discussion about reversals owing to 
light sources ordering can be avoided in the following 
discussion). 

Except the above condition, the mapping 9 still 
may or may not preserve the ordering of the points@ 
t o @  when they are mapped onto the eigen plane. 
9 consists of ( e l ,  $,) that  are  the eigen vectors of 

covariance matrix. Actually, four combinations exist, 
for the  directions of $, and $2. This is based on the 
fact that  (bi and -$, (i = 1,2) are  the possible candi- 
dates and that  preservation or reversal of the labelling 
order depends on the combinations of the directions of 

and $,. However, when the  eigen plane is defined 
as 2-D right-handed coordinate system, \k results in 
either of the only two types of mapping. 

When 9 preserves the  ordering of the  points @ t o  
@, we call it a "preservation mapping". When 9 
reverses the ordering, we call it a lLreversal mapping". 

For a given imaging situation, it is simple t o  test 
whether 9 defines a preservation or a reversal map- 
ping. Let e l ,  e2, .  . . , e p  be (1,0, . . . , o ) ~ ,  (0,1,0, .  . . , 
o ) ~ ,  . . . , (0,0,.  . . , l ) T  respectively. Suppose 9 maps 
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e l ,  e2, . . . ,ep t o  e , ,  e 2 ,  . . . , ep respectively. The dis- , , 
tribution of e l ,  e 2 ,  . . . , ek determines whether 9 is 
a preservation or a reversal mapping. 9 becomes 

I ,  

a preservation mapping i f  e l ,  e 2 ,  . . . , ep appear in 
counter-clockwise order. Conversely, 9 beconles a 
reversal mapping i f  they appear in clockwise order. 
[ASIDE: if the light sources are given in clockwise or- 
der then the sense is simalv reversed. Tha t  is. 9 is , I 

. " 
preservation i f  e l ,  e2, .  . . , e p  appear in clockwise or- 
der and reversal if they appear in counter-clockwise 



Table 1. How to Determine Sign of Gaus- 
sian Curvature from Distribution of Local 
Points on Eigen Plane 

ordering on the  

line or a point G = O  G = O  
clockwise G  < 0  G > O  

order] 
After 9 is determined as a preservation or reversal 

mapping, the sign of the  Gaussian curvature is recov- 
ered from the  distribution of five points on the eigen 
plane. 

3.3 Procedure 

Table 1 shows how t o  recover the sign of the Gaus- 
sian curvature from the pattern of local test points on 
the eigen plane. As before, let the five local points on 
the iniage be labeled @ for the center point, @ for its 
upper point, 0, @ and @ for the other three points 
oriented counter-clockwise. Suppose \k is a preserva- 
tion mapping. If @ t o  @ are mapped onto the eigen 
plane in a counter-clockwise manner then G  > 0. If 
@ t o  @ are mapped onto the eigen plane in a clock- 
wise manner then G < 0. While, if * is a reversal, 
the sign is determined as simply reversed result. Re- 
eardless of whether 9 is   reservation or reversal. if 
6 to  @ are mapped to a line o r  a point on the eigen 
plane then G  = 0. 

4 Experiments 

4.1 Diffuse Surface Case 

Three objects (which have varying albedo) are 
test,ed. Images are acquired for two different zenith 
angles of illumination, eight with a zenith angle of 
12[deg] and seven with a zenith angle of l7[deg]. Im- 
age examples of three objects are shown in Figure 2. 

The experimental results are shown in Figure 3. 
Varying albedo is handled correctly. The theoretically 
correct result is not known. But, qualitatively the es- 
timated sign of Gaussian curvature appears both cor- 
rect and robust though the  light source directions are 
not widely dispersed. The  method works for almost 
the entire visible surface. Some points which look like 
noise in Figure 3 are misjudged. Image irradeances 
obtained around points of zero Gaussian curvature are 
mapped to nearby locations on the eigen plane. This 
sometimes causes the  method t o  misjudge the  sign. 

4.2 Non-Diffuse Surface Case 

A glass with white color painting is used as a test 
object. It  has the  glossy surface reflectance. Measure- 
ment conditions are the  same manner as those for the  

Figure 2. Shading Images (a) Duck (b) 
Penguin and (c) Bear 

Figure 3. Results (a) Duck (b) Penguin 
and (c) Bear 

examples in Figure 2. Image samples are shown in 
Figure 4. 

The  regularity will be lost between the distribu- 
tion on the eigen plane and the original distribution 
on Gaussian sphere for the non-diffused area includ- 
ing specularity. It  means that  only the method itself 
can not be applied t o  the object with the glossy re- 
flectance. So, the proposed method selects the images 
t o  be  used for each point of the  test object among all 
images, i.e., the images which cause the specularity 
are not used, instead the images that  include only the 
diffused components are used. 

Assume the case of the constant albedo. Speci- 
fied points which include the glossiness are observed 
with the higher level of the image irradiance compared 
t o  other points. The threshold Th is used to judge 
whether any point includes glossiness or not. It  is 
determined by the observed image itself. 

The  pixel coordinate (i, j) and the irradiance rnea- 
surement E of ( i ,  j )  are denoted by (i, j, E), where 
i ,  j and E are considered to define the axes of a 3- 
D right-handed coordinate system. After all points 
on the  image are plotted in the space, Th is deter- 
mined by checking t,he peaks of the scatter plot in the 
space. Th is determined as around 180 for this ex- 
ample. Points that  have higher image i rrdiance than 
Th are extracted as those of the glossy area. 

Next, only the images that  have lower irradiance 
than Th are used t o  recover the sign of Gaussian cur- 
vature a t  each point in the  glossy area. 

The  results are  shown in Figure 5-(a) and Fig- 
ure 5-(b). In comparison with Figure 5-(a) and Fig- 
ure 5-(b), it is obvious that  removing the effect of 
glossy points among images can get better result in 
the glossy area. This extension is another advantage 
for that  the glossiness causes other methods [2][3] to  
fail. 



Figure 4. Example of Input Images 

Figure 5. (a)Result without Removal of 
Glossiness and (b) Result with Removal of 
Glossiness 

For the rvaluat,ion, the observed image irradiances 
for this glass object are direct,ly fitted to  the Phong 
reflectance function shown in Eq. (1) and the param- 
eters s and n are estimated. 

where i, e and g are incidence angle, emittance angle 
and phase angle respectively, while the parameter n 
represents the width (i.e. sharpness) of the specular 
peak, the  parameter s represents the percentage of 
the strength of the specular component t o  that  of the 
diffuse component,, and the  parameter C is related to  
the albedo. The  results are 0.18 for s and 43 for n ,  
respectively. 

Also, 2-D sinc function surface is used t o  evalu- 
a te  the accuracy by the simulation. Images are syn- 
thesized under the conditions of s=0.18 and n=43. 
Rleasurement conditions are the same as those for the 
e x a ~ ~ l p l e s  in Flgure 4. The accuracy for this example 
IS 96.7 %. 

Next, we investigate the effectiveness by taking the 
varlous coml~inations of the parameters s and n. We 
use fifteen images of 2-D sinc function synthesized by 
the Phong reflectance function. 

F~OITI the sin~rllation, it is shown that  the method 
can keep the accuracy of 90% whrn the value of pa- 
rameter s takes 0.3 or less. Here, the glossy com- 
ponent becollles larger when the  value of s becomes 
larger. Also the ~nc thod  is not sensitive to  the change 
of the parameter n. Since the  neth hod still assumes 
the diffi~sc surface, the accuracy of the method be- 
comes worse when s increases. 

Although we used the Phong   nod el to  evaluate the 
lilnitation of the method, it should be noted that  this 

method does not assunle any specific niodel of diff'rlse 
surface reflectance. 

5 Conclusion 

This paper described a new ~llebhod t,o recover the 
sign of local Gaussian crlrvatrlre directly froln I I IUI -  
tiple shading images. Generic diffuse reflectar~ct, is 
assumed. Principal components analysis is used to 
reduce a high dimensional problem to one of only two 
dimensions. 

The sign of Gaussian curvature is obtained by com- 
paring the relative orientation of five local test points 
in the itnage to  that  of the same points mapped onto 
the 2-D eigen plane. This is accon~plished without any 
specific model of diffuse surface reflectance or specific 
information about the direction of the light sources. 

Previous approaches used three light sources. 
Here, a larger number of light sources (and therefore a 
larger number of images) are used. Increased accuracy 
and robustness have been demonstrated, even when 
the light source directions are  not widely dispersed. 
Spatially varying albedo also is handleti correctly. 

It is also den~onstrated that  the method is applica- 
ble t o  the glossy surface by selecting ilnages for each 
point. Also the effective limit is given by si~nulat,ion. 

As the further snbject ,~,  the  approach t o  enlarge 
the effective range of this method, or the approach 
t o  recover not only the sign but also its n~agnit,ude 
directly from multiple shading images, are re~naincti. 
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