
MVd '98 IAPR Wotkrhop on Machine Vision Applications. Nov 17-t9. 19%. MAuhan. Chlha Japan 

1 5-3 
Learning Models of Animal Behaviaur for a Robotic Sheepdog 

N. Sumpter'g2, A.J. Rulpitt" R. V a ~ ~ h a n ~ ? ~ ,  R.D. Tillettm2 and R.D. Boylel 

'School of Computer Studies, The University of teeds, Leeds, WK 
'Silsoe Res~nrch Institute, Wrest Park, Silsoe, Beds., UK 

%ford Universit,~ Computing Lahoratotv, Parks Road, Oxford, CK 
e m a i l :  neils0scs.leeds.ac.uk, andyb0scs.leeds.ac.uk 

Abstract 

To firthcr the asr! of machine vision in animal- 
relat~d t a s b  such m~ automated monito~lqg, an un- 
iier.stonding of the behaviour of the animals in their 
ensrtmnment is rcqarired. This paper d e s c ~ b e s  an appli- 
cation, the Robotic Sheepdog, whtch exploits animal be- 
haviozrr to a c h i e v ~  i1.9 goal. We pres~nt  a method of au- 
tonnt icnl ly  mtmcting a model of animal behaviour that 
ijq deern,~d more appropsiafe than an alternate rule- 
based ~ n l t ~ t i o n ,  and dpscribe Iaoul this can be t ~ s e d  to 
detern ine  a IikeZzhood of future e v e ~ f s .  

f Introduction 

The application of machine vision techniques to the 
domain of animals is relativ~lv unexplor~d compared 
with ot,hrr areas of rrnmplrter vision research, despitp 
i t s  obvious potmt ial. Applications such as Schnfi~id's 
[I] rlsr of a vision spst.ern to d ~ t r r r n i n ~  automatically 
a pig's wright by thr surface area of the pig observed 
in an image could prove very useful to the agricultural 
industry. 

One reason for a Tack of animal related applica- 
tions is an insufficient understanding of the animaIs be- 
havianr wittiin their environment. S imp l~  rulebased 
spstcms of animal hehaviour can be used to give visu- 
ally appealing results (for example, animations of ani- 
mal flocking [2]), but these do not necessarily portray 
true hehaviour. 

In this paper, we describe how a model of animal 
behaviour can b p  learnt automat~icdly from i rnag~ se- 
qnencPs. and applied to predict flitme khaviour from 
a recent history of animal motion. 

The work forms part of the Rohot.ic Sheepdog 
Proj~ct [3]; an investigation into animal interactive 

robotics. The aim of the project is to  demonstrate an 
autonomous rokot system that  can successfully ma- 
nipulate a group of animals to some pr+-deterrnin~d 
goal, by exploiting thp animals' adaptivp behaviour. 
As a robotic task this differs significantly from pre- 
vious work combining robots and animals, where an- 
imal behaviour is deliberately rninimis~d by physical 
restraint 141. The task of the shpepdog was chosen due 
to the strong interaction between the dog, shepherd 
and flock animals. Using ducks instead of shwp al- 
lows us to experiment on a conveniently small scale, 
in a controll~d indoor environment. 

In order to successfuFly exploit the behaviour inher- 
ent to the animals, a model of the Iikely reaction of the 
ff ock to the robot vehicle must be constructed. Such 
a model can he built using a rulebawd solution to 
provide a control strategy for the robot [ 5 ] .  How~ver, 
whilst this provides a simulation of animal flocking 
that is visually similar to  the real animal hehaviours, 
it is argued that a model learned automatically from 
observations (in t~trns of image s~qoences), will pro- 
vide additional information of the r ~ d  environment 
that a rulebased approach would not be capable of 
encapsulating. 

2 Method 

In describing the behaviours of the animals, we con- 
sider modelling the location and velocity of both the 
flock and the robot, together with the flock shape. The 
flock is modelled as a whole, not as individual birds. 
This is due to  the poor resolution obtained when fit- 
ting the whole environment of the animals within the 
image frame. The flock and robot mwe  within a cir- 
cular arena, eight metres in diameter (sep Figure 1). 

Image frames are subtracted from a pre-learned 
background image, significant regions extracted and 



Figure 1. A typical image of the arena. 

then subjected t o  morphological smoothing. This pro- 
vides a s~gment~ation scheme for the flock as a Rroup. 
The robot, can he found by a high-contrast black and 
white motif placed on the top of the v~hicle; t,he d~sign 
also enahles us t o  d ~ t e r m i n e  the robot's orientation. 

The shape of the flock is also of interest, hecause 
it represents behavioural traits of the animds; for rx- 
ample, a long elliptical Aock shape indicates panic a4 
the animals fle from the robot predator. The shape 
can be modelled by using the outline of the segmented 
flock repjon as the basis for a Point Distribution Model 
{PDM) [GI to reduce the dimensionality of the shape 
data. 

By combining the locations of t h ~  flock and robot 
with the appropriate principal shape parameters of the 
PDM, a scene vector x can b~ constructed for each 
frame in an image sequence. 

The model of animal behaviour is a representation 
of the spatirrternporal patterns of the animals within 
their environment, rrpresented for time t as the rondi- 
tional probability p ( ~ # + ~  lxi, xtLl,. . . , xl-,), allowing 
the implicit generatmion of plausible future motions and 
appearance changes given recent, ~bscrvat~ions. 

To estimate this conditional probability density 
function (pdf), a state-based approach is used where a 
temporal sequence is considered in terms of the sgm- 
ho1.s observed (the feature vectors) and the context in 
which they appear. Thus the pdf becomps d~pendent  
on the  r~rrrent feature vector xt and a representation 
of the contextual history Hi. To achipvp this, a neural 
network architecture i s  llsed in F i g u r ~  2. Two corn- 
petitive learning networks [?] are connected by a Iayer 
of leaky integrators [8]. 

The symbol network is used t o  pcrforrn vector quan- 

Figuw Z2. f he approach used, represented as a 
netwwk architecture 

tisation on the space of the input scene vectors, xt , ef- 
fecitively ~lust~er ing the features into a set of M symbol 
states. 

The outputs of the symbol network are connected 
t,o a layer of leaky int.egrators. Each integrator is es- 
scntiallv a tiecay function: the winning symbol out- 
put (according to the competitive learning algorithm) 
causes the associated integrator value t o  rise; w h ~ n  the 
symbol output no longer wins, the integrator tails off 
slowly over time. In this way, by examining at time t 
the relative values on all the integrators, Hi , a notion 
of the order in which previous symbols were observed 
is obtained. 

T ~ P  context network performs vector quatisation 
upon the space of the leaky internator values, but mod- 
ified so that t h ~  next symbol output is associated with 
the previous integrator  stat^. The effect of this is that  
an ohserved 1pak-j integrator representation of history 
Ht produces a high response lor the next symbol in 
the sequence, xl+l. The inclusion of a f d b a c k  loop, 
similar to t.hat of [9], makes this association implicit, 
and enforces that. the estimated probability of state at 
a given time is dependent on both the currently ob- 
served symboI as well as the recent1y observed history. 

This approach is similar to that of Johnson and 
Hogg [lo], who use a comparable architecture to model 
human trajectories in order to monitor typical and 
atypical events. Our approach improves on t,his with 
the inclusion of the feedback mechanism to enahle im- 
plicit prediction of ftltilre trajectories without the need 
for an extra learning phase. Full details of the method 
used to train such a model are given in [ll]. 

3 Evaluation and Results 

The network is trained on a set of 20 sequences chat 
represent typical behaviours of the animals. Each se- 
quence consists of hetween 400 and 1200 frames, with 



Figure 3. Results of prediction in comparison 
to  actual fleck path. (top) for a sequence used 
t o  train the model and (bottom) for an unseen 
path 

~ a c h  srqurnce beginning at differwt positions within 
the arena. 

One of t,he principal aims of the approach taken is to 
he able to  present. partial information to t h ~  model in 
order that, t,he most likrlv corresponding missing data 
is o h t d n ~ d ,  for instance presenting a known robot, lo- 
cation and generating t hp  most plausihlr location for 
t.he animals. Figure 3 shows typical qualitative results 
of prediction, using thr  trainrd model. The path of 
the robot, from a spquence is presented t,o the network, 
and thp. corresponding predicter? path of the flock is 
shown. For both training sequences and unseen paths, 
it is observed that the  predicted behaviour closely r e p  
r~sen t s  t,he original path. 

A more suitable method of evaluation can be 
achirvrd by comparing the p r ~ d i r t ~ d  sequence of sym- 
bol states (obtained by the maximum likelihood valued 
context output,) with the actual symbol states t.hat, a 
known sequence pmsrd through. Figure 4 shows the 
percentage of incorrectly matched states against the 
numhrr of stat,es aheacl pr~dicted. For comparison the 

Figure 4. State mis-classifications between pre- 
diction and actual sequence 

Figure 5. Average distance error between pre- 
dicted and actual paths 

results for a simple hlarkov chain are aIso presented, 
this being modelled as the one-step transitional prob 
abilities hetween symbol states, again with thc max- 
imum valuc probal~ility being chosen. It is observed 
that the behaviaural model produces better results 
than the Markov process indicating t,hat the histmi- 
cal evidence is prodricing a better prediction decision. 

In the above evaluation, however, it is conceivable 
that when a mis-classification between predicted and 
actual state occurs, the (wrongly) predicted state lies 
close to t.he original state in the real f ~ a t u r e  space. 
Thus Figure 5 shows the average distance error be- 
tween predictions and real sequences. TI-t~ minimum 
error distance of approximately 50cm occurs due to 
quantisation md calibration effects. It is noted that 
the model performs very well in comparison to the 
Markov chain, which diverges greatly from the actual 
bcation as time increases. The error distance increases 
also over time, but only by atound 50cm over 30 frames 
(approximately 3 seconds), which is the diameter of 
the robot. 



4 Future Work and ConcIusions 

The general framework of the model to predict the 
next state given current information (in terms of the 
observed symbol and temporal context) lends itself 
well to Isard and Blake's CONDENSATIOY [12] algo- 
rithm, and futum work concerns the incorporation of 
the model into this tracking paradigm. Heap and Wogg 
[13] describe how a Markov chain betwwn areas of 
shapespace can be combined with CONDENSATION to 
good effect, and since the results presented here show 
a distinct improvement over the kind of Mxkov pre- 
dictor used, it is reasonable to expect the presented 
rnodel will provide a stronger tracking m~chanism. 

The approach taken also has potential for provid- 
ing an aut,umated control strategy for the robot itself, 
since t h ~  model inherently predirts not, only the path 
and shape of the flock, hut also of t.he robot. A goal 
location for the flock can be chosen, and a path of 
maxmimum likelihood from the current position l a  the 
goal found. The corresponding predicted robot path 
represents the best path for the robot to follow if the 
ducks are to be successfully herded to their goal. 

In conclusion, this paper presents a machine vision 
application where anirnd behaviours are learned au- 
tomatically from image sequences. A rnodrl of such 
behavioura proves essential in this unique robot s c e  
nario - using an autonomous vehicle to herd animals 
to a goaI. Ttre method for learning brhaviours is noveI, 
and provides an approach which is more appropriate 
than rule-based alternatives. Suitable estpnsions to 
the work are discussed, illustrating the applicability of 
the model to the tasks of tracking and control. 
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