
MVA'y8 W R  Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari. C h ~ b a  Japan 

1 3-27 Design and Implementation of Real Time System 
for Object Detection and Classification on Parallel Virtual Machine 

Tati L. Mengko, Trio Adiono, Handoko Setyawan, Rini Setiadarma, Donny A. Hudiansyah 
EE Eng. Department, Bandung Institute Of Technology 

Ganesha 10, Bandung 40132, Indonesia ; tel : 62 22 2509173 ext 3229 
e-mail: tmengko@ibm.net, tadiono@elka-gtw.ee.itb.ac.id, 

{handoko,rini,donny}@students.itb.ac.id 

abstract-This paper addresses the problem of 
implementing an object detection and classification 
system on a parallel virtual machine. Detection 
process was implemented using deformable template 
algorithm. Canny edge algorithm used to provide 
edge information need in template matching. The 
system gives descriptions about the shape, size, and 
orientation of the objects. To be implemented in 
industrial process, the system needs to meet certain 
time constrain. Previous research proved, the 
system's speed-performance is proportional to the 
number of object detected and model-used. Use of 
parallel virtual machine makes the system run 3.5 
times faster compared to previous system using single 
processor. 

1. Introduction 
Automation has long been a technology used in 

many industrial processes. Not only does it make the 
overall process faster, but it also results in more accurate 
operation, especially in processes where accuracy is of 
concern. Many industries adopted tius technology by 
creating human-like machines, that is machines capable 
to mimics human abilities. 

Human vision plays an important role in enabling 
human to interact with their environment. It acts as a 
sensor to gather information from their surrounding. 
There has been many research devoted to implement this 
capability into machines. In this paper, we attempt to 
design a visual sensor to be implemented in many 
industrial processes such as pick and place application 
and automatic fuel docking for spacecraft. As a sensor, 
this system is able to segment and identify objects of 
interest from the stationary complex background. 

Template matching is the most commonly used 
method to accomplish this task. However, it is not robust 
against changes of intensity and object's shape 
deformation. One of more general method is deformable 
template algorithm, wluch is used in our system as the 
basic algorithm. Robustness to noise and changes of 
intensity become the advantages of this algorithm that 
enable the system to precisely define the shape, size, 
position, and orientation of multiple objects. 

The foremost process to do is generating templates 
based on the system's database and extract edge 

information from the image. These templates will be 
used to detect object existence in the image. Instead of 
searching objects in every location possible in the image, 
we first specify searching areas, that is locations within 
the image where objects are most probably found. This 
early process proved to reduce the number of 
computation greatly. Morphological and bug following 
algorithms are chosen to locate the coordinates of the 
object's center of gravity and also detect how many 
objects there are in the system. 

Figure 1 : Future system Inlplen~entation 

The number of objects detected in an image affect 
the system's speed performance. The more object 
detected, the more computation need to be done by the 
system. Solely reducing the number of computation did 
not make the system meets real-time criteria, especially 
if there are too many objects in one image. The fact that 
identification process involves many sub-processes that 
are not related to each other gives us a possibility to 
solve this real-time problem by performing parallel 
computation on several processor or computers. The 
objective is to minimize the process time required. It 
should be noted that this paper emphasizes on optimizing 
parallel processing algorithm used in the system. 

The organization of the paper is as follows: section 
2 describes deformable template algorithm, the basic 
algorithm in the system, while section 3 describes 
Parallel Virtual Machine. The brief description of 
process performed in object detection and classification 
system will be described in section 4. Included in this 
section are the algorithms used to detect the existence of 
the objects and to define search area for each object. The 
algorithms used to match the template into each object 
detected previously are also described in section 4. 
System implementation in parallel virtual machine will 



be described in section 5. Representative result of = Model segment 
applying the system to various objects are given in pk 
section 6. Images used as the data are 256x256 pixels G ~ ( i , j )  

= Image gradient unity vector 
gray-level images. Section 7 describes directions for 
future work. Z = Image 

2. Deformable template 
Deformable template is a parametrical template that 

is designed to represent an object shape and used in 
segmentation and identification process. In order for the 
template to fit the object, it should be flexible enough to 
change its shape, size and orientation according to the 
object. Prior knowledge of object's shape is required to 
represent the object as a template. Deformable template 
algorithms consists of two factors [I]: 

Prior probability density fundion 
This function represents how close the deformed 
template matches the ideal template based on a 
priori knowledge of the object. 
Likelihoodprobability densil)tfundion 
This function represents how close the deformed 
template matches the real object on the image based 
on object edge information. 

3. Parallel Virtual Machine 
Parallel processing, the method of having many 

small tasks solve one large problem, has emerged as a 
key enabling technology in modem computing. One 
method of parallel processing which have low cost, high 
performance, and sustained productivity is distributed 
computing. Distributed computing is a process whereby 
a set of computers connected by a network, are used 
collectively to solve a single large problem. PVM is a 
tool which is issued bv MIT that unite several low- 
performance computers-to create kind of virtual super 
computer. PVM is made to solve a complicated 
computational problem into small and simple 
computations, such as image processing operation 
(convolution, optimization, etc) 

The PVM software provides a unified framework 
within which parallel programs can be developed in an 
efficient and straightforward manner using existing 
hardware. PVM enables a collection of heterogeneous 

Few assumptions are made on this system. The first computer systems to be viewed as a single parallel 

one is the system uses static camera, so that the object 
virtual machine. 

The PVM computing model is based on the notion be seen from One The second that an application consists of several tasks. Each task is is, since the system will be implemented in industrial responsible for a part of the application's computational 
process where the has been previously workload. sometimes an is pmllelized 
described and much prior probability along its functions; that is, och task perfons a different 
density can be so that likelihood function, for example, input, problem setup, solution, 
probability density function will be the only factor output, and display. process is oAen called concerned. functional parauelism. A more common method of 

The probabili@ density use in this system parallelizing an is called data perallelism. In 
is defined with eq. 3-7 [I]. this method all the tasks are the same, but each one only 

knows and solves a small part of the data. This is also 
referred to as the SPMD (single-program multiple-data) 
model of computing. PVM supports either or a mixture 
of these methods. 

h(x) = 
4. Description of methods 

else 

I-d4 - ISxS1  

The method consists of three sub-processes. First, 
detecting edge information of the image, second, I I v I / ~ ( ~ ,  j) = $71: (i, j) + VI; (i, j) 

( 2 )  locating the search area and third, fitting the template in 
\-I - 1 the right shape and orientation over each object found by 

VI(i, j )  = - 
[[V'[[V. i) 

( ~ 1 ~  (i, j), vlX ( i ,  j))' (3 the system. 

I b k l l  = k x k + l  - ~ k  1' + cYk+I - ' k ) '  
(4) 4.1. Edge detection 

The algorithm used in this process is Canny edge 
1 (5) algorithm. The reason to use this algorithm is because 

@k = - ( ~ k + l  - X P  yk+l - ~ k  y 
1 k k  11 not only does it produce edge magnitude of the image, it 

also produces edge gradient. The system needs both 

UE 
= Likelihood energy information to avoid detection-error caused by object 

IIvzll(i, j )  = Image gradient magnitude deformation. 



4.2. Search area localization 
This process starts by subtracting input image with 

the background image to eliminate the background from 
the image. It will produce an image that has low- 
intensity objects and high-intensity background. The 
produced image is referred to as clean image. 

The manipulation of the template is centered on its 
center of gravity, which is matched to the objects' 
centers of gravity. Therefore, if the system could define 
the center of gravity for each object, it would only need 
to manipulate the template around the predicted area 
instead of having to do the manipulation across the entire 
image area. 

In order to remove unnecessary information that still 
exist, the "clean image7' need to be adaptively threshold 
to produce a binary image, followed by dilating the 
image once, and subtracting it with the original binary 
image to obtain objects boundaries. The system use bug 
following algorithm to trace the boundaries and find the 
center of gravity of each object. 

We define 3x3 pixels area around the center of 
gravity of an object to be the template searching area. 
This area will act as starting point of object detection 
process using deformable template. l k s  process will 
reduce computation needed from 78643200 (without 
using searching area) to 10800 computations, and the 
overall process become 7280 times faster. 

It can be seen that edge detection and search area 
localization are two independent processes. Although 
both using the same image source, they don't change 
original image and process the image in two different 
ways. Thus, in thts research we split the processes to be 
executed in separate processor to speed up the overall 
performance. 

4.3. Object detection process 
Object detection process was performed by 

comparing templates recorded on database to the objects. 
The objects are classified based on matched template. 
This process performed three basic template 
manipulations, namely shifting, scaling and rotating. 
First the template placed over the image, where its center 
of gravity closed to the first pixel which defined 
previously as a member of first object's searching area. 

Template manipulation process begins with scaling 
process. The system also rotating every template 
produced from scaling process. The increment of scaling 
and rotating depends on system requirement. Lower the 
increment level means higher system's precision. After 
scaling and rotating processes finish, at that location, the 
system will shift template, based on its center of gravity, 
to the next search-area poinf and repeated until it covers 
all search area of the object. This process is repeated for 
each template in the database. 

The result of this process is the description of the 
shape, size, position and orientation of the best-matched 

template for this object, which will represent the 
properties of the real object. Matching process described 
above will be done for each object detected on the 
image. 

It can be seen that all the process done in object 
detection process could be divided in many ways, to be 
executed in parallel processors. It could be done by 
dedicating each processor to handle one object, 
dedicating each processor to run one template for every 
objects detected in the image, or using other 
configurations. Using this way, as long as we could add 
the number of processors used, we can always maintain 
the speed performance of the system even in the case of 
many objects. 

5. Implementing system on PVM 
The entire process sequence of the system consist of 

3 sub-processes: 
1. Detecting edge information 
2. Search area localization 
3. Object Detection 

As mentioned above, edge detection and search area 
localization could be executed separately. The third sub- 
process, object detection, could only be executed after 
the system has finished both first and second processes. 
The third process itself could be executed in parallel in 
many configurations, based on fact that the computation 
is repeated for every object using every template 
recorded. 

After examined several configurations for parallel 
system implementation, we decided that dedicating each 
processor to do detection process for one object using 
every template recorded, as the best configuration for the 
system. This configuration was chosen based on the fact 
that there were more objects than templates in the system 

Topology of this system is star connectivity, which 
means slaves is only connected to master, and message 
passing is done between master and slaves, and vice 
versa, so there won't be message passing among slaves. 

The system was tested with a set of images with 
different condition, such as number of objects, objects 
placement, and image background. The maximum 
number of object used is 4 objects, and the number of 
template used is 2 templates. Computers used in this 
experiment are UNIX based PC, using Intel Pentium 100 
MHz - Intel Pentium Pro 200 MHz processor speed. We 
divide the computers into two groups, master and slave. 
Master computer is a computer that has the responsibility 
to decide how many slave computers used 'and the task 
done by each of them. Slave computer is a computer 
used to do computation needed by the system depend on 
master's plan. Basically each slave is designed to have 
the capability to perform same function and 
computation. 

There must be one master for the whole system, 
and there will be several slaves depending on system 



configuration. In this case, each computer is designed to 
identify only one object, so there will only be one slave 
process in one computer. The number of computer used 
depends on the number of the object found in the image. 
If master finds N objects in input image, it will spawn N- 
1 slaves in N-1 computers for object identification, and 
will identify the last object by itself. The reason to use 
this configuration is that the number of template used in 
this experiment smaller than the number of object found 
in the image. 

w:.:.:.:.:.:.: .::;:..::;:;: *.:>. :3j .==<> ::;:::;:::;:;:;<:::;*.5:> 

.dp. d.IHtbn edge detcdlon edge detedm 

Figure 3 System Implementation on PVM 

Edge detection process was executed next on every 
slave activated previously. We design all slaves to 
execute this process instead of dedicating one processor 
to execute the process because of transmission overhead. 

By the fact that the time consumed by search area 
localization process is very small compared to the time 
consumed by edge detection process, we decide to use 
this approach to avoid transmission problem. 

6. Experimental results 
This system was tested on a set of 40 images which 

represented various object size, shape, and orientation. 
They also represent various numbers of objects lie on the 
image. The results of this test were used to measure the 
system's persistence and speed. 

Current experiments have focused on detecting 
simple geometrical objects with less than 8 vertex. 

The more object to be identified, the more time 
consumed by system. On sequential system, adding 
more object will add 2700 computations to be done 
sequentially, which is the same as about 3 seconds. 
Implementing that system into PVM will decrease time 
consumed by system processes, by the way using more 
computer to solve those computations. 

Experimental result shows adding one object will 
increase 0.21 second consumed by system processes, 

which is 15 times as fast as previous system. This 
increasing is merely caused by image transmission from 
master to slave. 

Total time consumed by system in identifying 4 
objects is 5.84 seconds, which is 3.5 times as fast as 
previous system. 

7. Future works 
Having identified what appears to be a fairly robust 

result, our current major priority is creating a more 
general system that is able to detect objects undergoing 
more complex deformation. Thing also considered is 
implementing this system in real-life application such as 
automatic robot. 

8. Conclusions 
Use of Parallel Virtual Machine proved to speed up 

the overall identification process in the system by 
distributing unrelated computations into several 
processors. System's speed mostly depends on the 
number of objects found in the image. Using this 
method, the system is capable to maintain its speed 
performance in confronting great number of objects by 
adding the number of processor or computers used. 

From the experimental result, it could also be 
concluded that the problems occur in implementing the 
system were data transmission period between computer 
used, and waiting periods between each process. 

REFERENCES 
[I] Marie-Pierre, S Lakshmanan, Anil K. Jain, "Vehicle 
Segmentation and Classification Using Deformable 
Templates," Vol. 18 No.3 March 1996, IEEE Trans. on 
Pattern Analysis and Machine Intelligence 
[2] J.R. Parker, "Algorithms for Image Processing and 
Computer Vision," John Wiley & Sons, Inc., 1997 
[3] A1 Geisf "PVM : A Users' Guide and Tutorial for 
Networked Parallel Computing," The MIT Press 
Cambridge, Massachusetts London, England, 1994 
[4] T. Mengko, T. Adiono, H. Setyawan, R. Setiadama, 
"Design and Implementation of Object Detection and 
Classification System Based on Deformable Template 
Algorithm", to be presented in IEEE APCCAS'98, 
Cluangmai, Thailand. 
[5] H. Setyawan, Sistem Iden t i fh i  objek berbasis 
deformable template (Object Identification based on 
Deformable Template), unpublished thesis, ITB, 1998. 




