
MVA '98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chiba. Japan

13-1 1
Fast Prototyping of Image Processing Applications Using Functional

Skeletons on a MIMD-DM Architecture

Dominique GINHAC, Jocelyn SEROT, Jean Pierre DERUTIN
Laboratoire des Sciences et Matiriaux pour 1'Electronique et d'Automatique

Universitk Blaise Pascal de Clermont Ferrand
UMR 6602 CNRS

F-63177 Aubikre Cedex France

E-mail: (ginhac jserot ,derutin)@lasmea.univ-bpclermont .fr

Abstract development of an application performing connected
component labelling on digital video streams.

In this paper, we assess the applicability of the
skeleton-based approach to portable parallel pro- 2 ~ l ~ ~ ~ i t h ~ i ~ skeletons
gramming within the vision application domain.
Four algorithmic skeletons for low and intermediate
level image processing are proposed. For each skele-
ton we give an architecture-independent executable
specification, a parallel implementation template as
a process network and a performance model. These
skeletons are used to build a programming environ-
ment dedicated to the fast prototyping of embedded
vision applications, and mostly built from existing
software components. Several examples are provided
to illustrate the concepts and tools introduced, in-
cluding a real-time vehicle detection and tracking
application.

1 Introduction

Although sequential computers gain more and
more power, complex image processing applications
still require dedicated parallel architectures in order
to cope with real-time constraints.

However, programming such parallel systems re-
mains anon trivial task, leading to long development
cycles. As a result fast prototyping and efficiency are
often seen as incompatible goals.

We aims a t conciliating these two goals by pro-
viding a software environment dedicated to the fast
prototyping of real time vision algorithms on MIMD-
D M platforms. This software is based upon the con-
cept of algorithmic skeletons. Skeletons are higher-
order program constructs which encapsulate recur-
ring forms of parallel program structures and hide
their low-level implementation details.

In this paper, we present the most important fea-
tures of this environment and demonstrates its use-
fulness through a real size case study, namely the

Within our application domain - low and in-
termediate level image processing - a retrospective
analysis of existing implementations on MIMD-DM
platforms shows that most of parallel applications
are actually built upon a limited number of recur-
ring patterns. Each of these patterns can be seen
as a fixed communication harness embedding a set
of user specific sequential functions. This allows for
abstracting them into higher-order, reusable paral-
lel constructs the parameters of which are the user
sequential functions. The semantics of these con-
structs - called algorithmic skeletons after Cole [2]
- can be captured using two definitions [8] :

a declarative one, which gives the meaning of a
skeleton in an architecture-independent, purely
applicative manner. This definition is classically
written using a functional language like ML[5].

an operational one, which details its actual im-
plementation on a given platform in terms of
architecture-specific parallel facilities (message-
passing calls, shared-memory access, . . .).

Skeletons form the basis of the so-called restricted
parallel computation models [9] [7] in which the pro-
grammer's task is to select and compose instances of
pre-defined skeletons, rather than dealing with low-
level, error-prone parallel constructs. These models
offer a way of conciliating requirements for fast pro-
totyping (the declarative abstract meaning of skele-
tons promotes instant re-usability) and efficiency
(their implementation, written once and remaining
hidden, can be carefully tested and optimised).

A key point in any skeletal programming model
lies in the choice of a correct set of skeletons. (see
for instance [l] for a review of proposals). In our
case, this choice was made on the basis of a careful
retrospective analysis of existing image processing
applications on MIMD-DM architectures (especially
the TRANSVISION [4] platforms, for which we had a
large corpus of working, hand-coded parallel appli-
cations).

Examples of algorithms involved are:

low-level pre-processing (filtering, edge detec-
tion, etc.),

spatio-temporal operators (Markov field analy-
sis, etc.),

extraction of geometric primitive and/or per-
ceptual groupings,

detection and tracking of mobile objects in real
scenes.

This retrospective abstraction process soon drew
out four broad classes of skeleton-level parallel con-
structs

Constructs devoted to "geometric" processing
of iconic data. These are all instances of an
elementary form of data parallelism in which the
input image is decomposed into subimages, each
subimage is processed independently with the
same function, and the processed subimages are
reassembled to form the output image.

Constructs devoted to the extraction of mid-
level features from iconic data. These are also
built on a data-parallel, geometric decomposi-
tion scheme, but the processing of each subim-
age produces specific features instead of subim-
ages, hence the need for a specific merge func-
tion.

Constructs encapsulating generic parallel con-
trol structures such as data farms or task farms.
These typically involve processing lists of fea-
tures when the size of the list and/or its ele-
ments depends on the input data and cannot
be predicted.

Constructs reflecting the iterative nature of the
vision algorithms, i . e. the fact that an embed-
ded vision system does not process single images
but continuous streams of images1. An impor-
tant subcase of this is when processing of the
i t h image of the stream depends on results com-
puted on images i - 1, ..., i - k.

In our case, this stream comes directly from a CCD cam-
era, through a synchronizing frame-grabber

The first class can be viewed as a specific instance of
the second, in which the merge function reduces to
a purely geometric composition operation. We also
judged that both the data and task farming control
abstractions deserved their own skeleton. Hence the
following four "elementary" skeletons that will make
the basis of our programming environment: SCM
(Split, Compute and Merge), D F (Data Farming),
T F (Task Farming), and ITERMEM (Iterate with
Memory).

The four basic skeletons are :

The SCM skeleton (Split, Compute and Merge)
encompasses most of regular, data-parallel
strategies in which the input data is divided
into a fixed number of partitions and each one
is processed by a different processor. The fi-
nal output is obtained by combining the results
computed on each partition.

The D F (Data Farming) skeleton, devoted to
irregular data-parallelism, is an abstraction of
the processor farm model in which a master dy-
namically dispatches data packets to a pool of
workers and accumulates results until each in-
put data is processed.

The T F (Task Farming) skeleton can be seen as
a generalisation of the D F one, in which each
worker can recursively generates new packets to
be processed. Its main use is for implementing
the so-called divide-and-conquer algorithms.

The ITERMEM skeletons is used whenever
the stream-based model of computation has to
be made explicit, for example when computa-
tions on the nth image depends on results com-
puted on the n-lth. Such "looping" patterns
are very common in tracking algorithms, based
upon system-state prediction

For the sake of brevity, only the SCM skeleton is
illustrated in the sequel.

3 The software environment

The different components of our skeletal program-
ming environment are depicted in figure 1. The
source program is a functional specification of the
algorithm, in which all parallelism is made explicit
by means of composing instances of the above-
mentioned skeletons, each instance taking as pa-
rameters user-specific sequential functions written
in C. A custom ML compiler first turns this spec-
ification into a data-flow graph, with nodes associ-
ated to user computing functions and/or skeleton
control processes, and edges indicating communi-
cations. This graph of processes has then to be
mapped onto the target architecture, which is also

Figure 1: The skeleton-based programming environ-
ment

described as a graph, with nodes associated to pro-
cessors and edges representing communication chan-
nels. This task, which involves finding a static dis-
tribution of processes onto processors and a mixed
staticldynamic scheduling of communications onto
channels is handled by a third-party software called
SynDEx[lO]. SynDEx's output is as set of processor-
independent programs (m4 macro-code, one per pro-
cessor). These macro-codes are finally expanded
into compilable code by taking account the actual
target language and message-passing facilities (C +
readlwrite instructions on transputer links in our
case).

4 First results

The skeletal programming system presented in
section 3 has been first validated on a application
performing connected component labelling on 25Hz,
256x256 digital video streams.

The connected component labelling (CCL) is a
"classic" algorithm for which efficient parallel im-
plementations have been extensively searched, both
for SIMD[3] and MIMD[6]. It consists in identify-
ing and labelling contiguous regions within a binary
image. It can be used for instance to separate candi-
date objects after a region extraction was completed.
Classical algorithms relies on three steps:

1. local pre-labelling: temporary labels are at-
tributed to pixels using a 2x2 L-shaped mask
and forwarded following 4 (or 8) connectivity.

2. labelling conflicts (typically arising from U-

shaped patterns) are detected and used to build
a list of label equivalences.

3. the image of temporary labels is corrected by
means of a lookup table built from the final list
of equivalences.

The functional specification of this algorithm, us-
ing two SCM skeletons is given fig 2.a. rb , pre,
toem, co r r and b r are the user sequential functions
(written separately in C). The first SCM uses a par-
tition of the input image into n horizontal strips to
compute the temporary labels and the final lookup
table, taking into account the equivalence conflicts
arising at strip boundaries. The second SCM skele-
ton simply applies this lookup table to produce the
result image, using the same geometric partition.

The corresponding data-flow graph (generated by
th compiler) and its distribution/scheduling onto
a 4-processor ring architecture (computed by Syn-
DEx) are shown in fig 2b and 2c.

Measured execution times are about 80 ms for
a 256x256 image and 4 processors, with a relative
speedup of 2.7). The main lesson drawn from that
preliminary test-bench, however, was not on raw
performances but on the effective prototyping capa-
bilities of the software environment: in that case, the
programmer's work boiled down to writing 3 pure se-
quential C functions: pre, toem and co r r (rb , b r ,
input and d i sp are provided by the environment)
and the skeletal specification showed in fig 2a. Un-
derlying implementation details (including process
placement, communication scheduling, buffer allo-
cation, provision for deadlock avoidance, . . .) were
all transparently handled by the compiler. The re-
sult is that it took less than one day to get a working
implementation of the algorithm on the target plat-
form (regardless of the number of processors).

5 Conclusion

This paper has presented a methodology dedi-
cated to the rapid prototyping of image processing
applications on dedicated MIMD-DM architectures,
based upon the concept of algorithmic skeletons.
This methodology provides a tractable solution to
the parallelisation problem, by restricting the ex-
pression of parallelism to a few forms admitting both
a well-defined abstract semantics and one or more
efficient implementations. A prototype system level
software has been developed to support this method-
ology. It uses both a custom ML-to-data-flow com-
piler and an existing distributing/scheduling tool to
turn a high-level specification into executable func-
tional code. Preliminary results of this system - il-
lustrated here with a complete application perform-
ing CCL on a multi-transputer real-time vision ma-
chine - are encouraging since they show a dramatic

let i = input

let (t1,t) =

scm 4 rb
pre toem i

let ri =
scm 4 rb

(con. t) br tl

let main =
disp ri

fig 2a fig 2b fig 2c

Figure 2: The target implementation

reduction in development time while keeping satis-
factory performances.

Work under progress includes further validation
of the approach through the implementation of
more complex applications (involving several dis-
tinct skeletons and inter-skeletons optimisations)
and streamlining the system in order to provide a
complete integrated solution that could be used by
programmers with little or no previous experience in
parallelism.

References

[I] Duncan K.G. Campbell. Towards a Classifi-
cation of Algorithmic Skeletons. Research Re-
port YCS-276, Department of Computer Sci-
ence, University of York, December 1996.

[2] M. Cole. Algorithmic skeletons: structured man-
agement of parallel computations. Pitman/MIT
Press, 1989.

[3] R. Cypher, J.L.C. Sanz, and L. Snyder. Algo-
rithms for image componed labeling on SIMD
mesh connected computers. In IEEE Trans.
Computers, volume 32, February 1990.

[4] P. Legrand, R. Canals, and J.P. DCrutin. Edge
and region segmentation processes on the par-
allel vision machine Transvision. In Computer
Architecture for Machine Perception (CAMP 93),
pages 410-420, New-Orleans, USA, December
93.

[5] R. Milner, Tofte M., and Harper R. The Defi-
nition of Standard ML. MIT Press, 1984.

[6] H.T. Nguyen, K.K. Jung, and R. Raghavan.
Fast parallel algorithms : from images to level
sets and labels. In Parallel Architectures for
Image Processing, volume 1246, pages 162-176,
1990.

[7] S. Pelagatti. A methodology for the develop-
ment and the support of massively parallel pro-

grams. PhD thesis, Universita degli studi di
Pisa, Dipartimento di informatics, March 1993.

[8] J . Shot . Embodying parallel functional skele-
tons : an experimental imp1emc:ntation on top
of MPI. In Proceedings of Europar 97, pages
629-633, Passau, Germany, August 1997.

[9] D. B. Skillicorn. Architecture-independent par-
allel computation. IEEE Computer, 23(12) :38-
50, December 1990.

[lo] Y. Sorel. Massively parallel systems with real
time constraints. The "Algorithm Architecture
Adequation" Methodology. In Proc. Massively
Parallel Computing Systems, Ischia Italy, May
1994.

