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Abstract development of an application performing connected 
component labelling on digital video streams. 

In this paper, we assess the applicability of the 
skeleton-based approach to portable parallel pro- 2 ~ l ~ ~ ~ i t h ~ i ~  skeletons 
gramming within the vision application domain. 
Four algorithmic skeletons for low and intermediate 
level image processing are proposed. For each skele- 
ton we give an architecture-independent executable 
specification, a parallel implementation template as 
a process network and a performance model. These 
skeletons are used to build a programming environ- 
ment dedicated to the fast prototyping of embedded 
vision applications, and mostly built from existing 
software components. Several examples are provided 
to illustrate the concepts and tools introduced, in- 
cluding a real-time vehicle detection and tracking 
application. 

1 Introduction 

Although sequential computers gain more and 
more power, complex image processing applications 
still require dedicated parallel architectures in order 
to cope with real-time constraints. 

However, programming such parallel systems re- 
mains anon trivial task, leading to long development 
cycles. As a result fast prototyping and efficiency are 
often seen as incompatible goals. 

We aims a t  conciliating these two goals by pro- 
viding a software environment dedicated to the fast 
prototyping of real time vision algorithms on MIMD- 
D M  platforms. This software is based upon the con- 
cept of algorithmic skeletons. Skeletons are higher- 
order program constructs which encapsulate recur- 
ring forms of parallel program structures and hide 
their low-level implementation details. 

In this paper, we present the most important fea- 
tures of this environment and demonstrates its use- 
fulness through a real size case study, namely the 

Within our application domain - low and in- 
termediate level image processing - a retrospective 
analysis of existing implementations on MIMD-DM 
platforms shows that most of parallel applications 
are actually built upon a limited number of recur- 
ring patterns. Each of these patterns can be seen 
as a fixed communication harness embedding a set 
of user specific sequential functions. This allows for 
abstracting them into higher-order, reusable paral- 
lel constructs the parameters of which are the user 
sequential functions. The semantics of these con- 
structs - called algorithmic skeletons after Cole [2] 
- can be captured using two definitions [8] : 

a declarative one, which gives the meaning of a 
skeleton in an architecture-independent, purely 
applicative manner. This definition is classically 
written using a functional language like ML[5]. 

an operational one, which details its actual im- 
plementation on a given platform in terms of 
architecture-specific parallel facilities (message- 
passing calls, shared-memory access, . . . ). 

Skeletons form the basis of the so-called restricted 
parallel computation models [9] [7] in which the pro- 
grammer's task is to select and compose instances of 
pre-defined skeletons, rather than dealing with low- 
level, error-prone parallel constructs. These models 
offer a way of conciliating requirements for fast pro- 
totyping (the declarative abstract meaning of skele- 
tons promotes instant re-usability) and efficiency 
(their implementation, written once and remaining 
hidden, can be carefully tested and optimised). 



A key point in any skeletal programming model 
lies in the choice of a correct set of skeletons. (see 
for instance [l] for a review of proposals). In our 
case, this choice was made on the basis of a careful 
retrospective analysis of existing image processing 
applications on MIMD-DM architectures (especially 
the TRANSVISION [4] platforms, for which we had a 
large corpus of working, hand-coded parallel appli- 
cations). 

Examples of algorithms involved are: 

low-level pre-processing (filtering, edge detec- 
tion, etc.), 

spatio-temporal operators (Markov field analy- 
sis, etc.), 

extraction of geometric primitive and/or per- 
ceptual groupings, 

detection and tracking of mobile objects in real 
scenes. 

This retrospective abstraction process soon drew 
out four broad classes of skeleton-level parallel con- 
structs 

Constructs devoted to "geometric" processing 
of iconic data. These are all instances of an 
elementary form of data parallelism in which the 
input image is decomposed into subimages, each 
subimage is processed independently with the 
same function, and the processed subimages are 
reassembled to form the output image. 

Constructs devoted to the extraction of mid- 
level features from iconic data. These are also 
built on a data-parallel, geometric decomposi- 
tion scheme, but the processing of each subim- 
age produces specific features instead of subim- 
ages, hence the need for a specific merge func- 
tion. 

Constructs encapsulating generic parallel con- 
trol structures such as data farms or task farms. 
These typically involve processing lists of fea- 
tures when the size of the list and/or its ele- 
ments depends on the input data and cannot 
be predicted. 

Constructs reflecting the iterative nature of the 
vision algorithms, i .  e. the fact that an embed- 
ded vision system does not process single images 
but continuous streams of images1. An impor- 
tant subcase of this is when processing of the 
i t h  image of the stream depends on results com- 
puted on images i - 1, ..., i - k. 

In our case, this stream comes directly from a CCD cam- 
era, through a synchronizing frame-grabber 

The first class can be viewed as a specific instance of 
the second, in which the merge function reduces to 
a purely geometric composition operation. We also 
judged that both the data and task farming control 
abstractions deserved their own skeleton. Hence the 
following four "elementary" skeletons that will make 
the basis of our programming environment: SCM 
(Split, Compute and Merge), D F  (Data Farming), 
T F  (Task Farming), and ITERMEM (Iterate with 
Memory). 

The four basic skeletons are : 

The SCM skeleton (Split, Compute and Merge) 
encompasses most of regular, data-parallel 
strategies in which the input data is divided 
into a fixed number of partitions and each one 
is processed by a different processor. The fi- 
nal output is obtained by combining the results 
computed on each partition. 

The D F  (Data Farming) skeleton, devoted to 
irregular data-parallelism, is an abstraction of 
the processor farm model in which a master dy- 
namically dispatches data packets to a pool of 
workers and accumulates results until each in- 
put data is processed. 

The T F  (Task Farming) skeleton can be seen as 
a generalisation of the D F  one, in which each 
worker can recursively generates new packets to 
be processed. Its main use is for implementing 
the so-called divide-and-conquer algorithms. 

The ITERMEM skeletons is used whenever 
the stream-based model of computation has to 
be made explicit, for example when computa- 
tions on the nth image depends on results com- 
puted on the n-lth. Such "looping" patterns 
are very common in tracking algorithms, based 
upon system-state prediction 

For the sake of brevity, only the SCM skeleton is 
illustrated in the sequel. 

3 The software environment 

The different components of our skeletal program- 
ming environment are depicted in figure 1. The 
source program is a functional specification of the 
algorithm, in which all parallelism is made explicit 
by means of composing instances of the above- 
mentioned skeletons, each instance taking as pa- 
rameters user-specific sequential functions written 
in C. A custom ML compiler first turns this spec- 
ification into a data-flow graph, with nodes associ- 
ated to user computing functions and/or skeleton 
control processes, and edges indicating communi- 
cations. This graph of processes has then to be 
mapped onto the target architecture, which is also 



Figure 1: The skeleton-based programming environ- 
ment 

described as a graph, with nodes associated to pro- 
cessors and edges representing communication chan- 
nels. This task, which involves finding a static dis- 
tribution of processes onto processors and a mixed 
staticldynamic scheduling of communications onto 
channels is handled by a third-party software called 
SynDEx[lO]. SynDEx's output is as set of processor- 
independent programs (m4 macro-code, one per pro- 
cessor). These macro-codes are finally expanded 
into compilable code by taking account the actual 
target language and message-passing facilities (C + 
readlwrite instructions on transputer links in our 
case). 

4 First results 

The skeletal programming system presented in 
section 3 has been first validated on a application 
performing connected component labelling on 25Hz, 
256x256 digital video streams. 

The connected component labelling (CCL) is a 
"classic" algorithm for which efficient parallel im- 
plementations have been extensively searched, both 
for SIMD[3] and MIMD[6]. It consists in identify- 
ing and labelling contiguous regions within a binary 
image. It can be used for instance to separate candi- 
date objects after a region extraction was completed. 
Classical algorithms relies on three steps: 

1. local pre-labelling: temporary labels are at- 
tributed to pixels using a 2x2 L-shaped mask 
and forwarded following 4 (or 8) connectivity. 

2. labelling conflicts (typically arising from U- 

shaped patterns) are detected and used to build 
a list of label equivalences. 

3. the image of temporary labels is corrected by 
means of a lookup table built from the final list 
of equivalences. 

The functional specification of this algorithm, us- 
ing two SCM skeletons is given fig 2.a. rb ,  pre,  
toem, co r r  and b r  are the user sequential functions 
(written separately in C). The first SCM uses a par- 
tition of the input image into n horizontal strips to 
compute the temporary labels and the final lookup 
table, taking into account the equivalence conflicts 
arising at strip boundaries. The second SCM skele- 
ton simply applies this lookup table to produce the 
result image, using the same geometric partition. 

The corresponding data-flow graph (generated by 
th compiler) and its distribution/scheduling onto 
a 4-processor ring architecture (computed by Syn- 
DEx) are shown in fig 2b and 2c. 

Measured execution times are about 80 ms for 
a 256x256 image and 4 processors, with a relative 
speedup of 2.7). The main lesson drawn from that 
preliminary test-bench, however, was not on raw 
performances but on the effective prototyping capa- 
bilities of the software environment: in that case, the 
programmer's work boiled down to writing 3 pure se- 
quential C functions: pre, toem and co r r  ( rb ,  b r ,  
input  and d i sp  are provided by the environment) 
and the skeletal specification showed in fig 2a. Un- 
derlying implementation details (including process 
placement, communication scheduling, buffer allo- 
cation, provision for deadlock avoidance, . . .) were 
all transparently handled by the compiler. The re- 
sult is that it took less than one day to get a working 
implementation of the algorithm on the target plat- 
form (regardless of the number of processors). 

5 Conclusion 

This paper has presented a methodology dedi- 
cated to the rapid prototyping of image processing 
applications on dedicated MIMD-DM architectures, 
based upon the concept of algorithmic skeletons. 
This methodology provides a tractable solution to 
the parallelisation problem, by restricting the ex- 
pression of parallelism to a few forms admitting both 
a well-defined abstract semantics and one or more 
efficient implementations. A prototype system level 
software has been developed to support this method- 
ology. It uses both a custom ML-to-data-flow com- 
piler and an existing distributing/scheduling tool to 
turn a high-level specification into executable func- 
tional code. Preliminary results of this system - il- 
lustrated here with a complete application perform- 
ing CCL on a multi-transputer real-time vision ma- 
chine - are encouraging since they show a dramatic 



let i = input 

let (t1,t) = 

scm 4 rb 
pre toem i 

let ri = 
scm 4 rb 

(con. t) br tl 

let main = 
disp ri 

fig 2a fig 2b fig 2c 

Figure 2: The target implementation 

reduction in development time while keeping satis- 
factory performances. 

Work under progress includes further validation 
of the approach through the implementation of 
more complex applications (involving several dis- 
tinct skeletons and inter-skeletons optimisations) 
and streamlining the system in order to provide a 
complete integrated solution that could be used by 
programmers with little or no previous experience in 
parallelism. 
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