
MVA '98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chiba, Japan

Model Management in the System Generating Vision Inspections

Martin KrEmBf, Petr Kodl*
ProTyS Ltd. and Rockwell Automation Ltd., Research Center Prague

Abstract accordingly. However, they are not able to build

The article presents a possible approach to model
management in a knowledge-based system with dis-
tributed knowledge. The knowledge based system
is designed to automatically generate vision inspec-
tions. The proposed model management mechanism
extends system reasoning power without increasing
system complexity. The model management knowl-
edge is structured similarly to knowledge for inspec-
tion synthesis. Consequently, important advantages
of knowledge organization like sharing, flexibility, in-
dependence, etc. are preserved for both kinds of
knowledge.

and manipulate models if these are not provided ex-
ternally (see [6, 51). The CAD models also do not
contain some important information, for instance,
explicit description of object defects as they occur
in training images. Presented model management
overcomes some of these disadvantages.

2 Vision Inspection Synthesis

Our testing environment SYGEVIN (see [7]) is
a knowledge-based system that automatically gen-
erates vision inspections. It accepts three types of
input data:

specification of vision inspection objectives,
1 Automatic Vision Programming

training images,

Aut,omatic design of industrial vision inspections
can be viewed as a computer aided synthesis of vi-
sion programs. Systems providing this type of ser-
vices are designed especially to enable efficient uti-
lization of large vision libraries even by experts from
other fields (see [I, 2, 3, 41).

Comparing to general vision programs, indus-
trial vision inspections exhibit some specialities.
Used vision algorithms are relatively simple due to
speed requirements. Processed images are usually
of good quality because acquisition process can be
controlled. On the other hand, vision inspections are
executed repeatedly on many images for a long time.
Image properties can vary within certain range thus
the inspection has to be well adjusted.

Systems generating vision inspections do not
build programs from scratch. Instead, they usually
compose inspection algorithms from library func-
tions, called vision tools. To produce reliable, well
adjusted inspections the systems have to utilize all
available information during inspection set up. Be-
side training images they often retrieve a lot of con-
text information interacting with a user. Models of
inspected objects represent important pieces of such
information.

Systems for aided inspection design usually can
accept CAD object models and set up inspections

'Address: Americka 22, 120 00 Prague, Czech Republic.
E-mail: martink0rockwell.cz. pecold0rockwell.cz

context information.

All these pieces of information are provided by the
user. Based on input data, the system generates
vision inspection programs. These programs define
inspection structure, i.e. sequence of selected vision
tools together with data flow, and parameter values
for used vision tools. The system is able to generate
more inspections if its database allows alternative
solutions of given task.

2.1 Reasoning Model

The reasoning for inspection synthesis consists of
two subtasks:

planning

parameter selection

The plan reasoning is carried out as a skeletal plan-
ning (see [a]). Given inspection objectives define an
inspection goal for which the system selects the most
suitable skeletal plan from its database. The skeletal
plan itself is again a sequence of goals, i.e. inspec-
tion sub-goals. The sub-goals can be both simple
and complex. Simple goals are fulfilled by apply-
ing one vision tool while complex goals have to be
further decomposed. Skeletal plan based decompo-
sition continues until the plan consists of only simple
goals.

The parameter selection is carried out as rule
based reasoning. On contrary to planning, which is
goal-driven, parameter selection is data-driven. Pa-
rameters are usually optimized using trial-and-error
approach. Constraints on vision tool outputs are de-
termined and then parameter values are selected to
satisfy them. For instance, optimizing a gage tool
the system identifies range where the edge should
occur and then adjusts correlation kernel.

System reasoning is implemented using AND/OR
schemes. Scheme structure reflects skeletal planning
hierarchy. Scheme nodes encapsulate data driven
decision making. It is possible to distinguish three
node types:

AND nodes, called Plans, correspond to skeletal
plans,

OR nodes, called Abstract Operators, correspond
to complex goals,

leaf nodes, called IPP Operators ', correspond to
simple goals.

Decision making knowledge is represented by
rules. It is distributed among the scheme nodes.
Knowledge is organized such that different types of
nodes make different decisions. OR nodes select the
most promising plans from connected AND nodes.
They define sequences in which alternative plans are
examined. Leaf nodes select parameter values for
vision tools. They address parameters that can be
optimized a t this level. AND nodes select values for
parameters that have to be coordinated over several
tools. For instance, detecting object position using
gage tools the tool locations have to be selected for
all gage tools at once.

I-J
mikc

the system allows to propagate decisions only down-
ward. For instance, parameter values selected in
AND nodes are propagated to corresponding leaf
nodes. It is not possible to propagate any deci-
sion into upper levels. This restriction imposes quite
strong structure to the system knowledge and in-
creases flexibility. Nodes can be plugged into other
inspections without modifying their internal knowl-
edge. If upward decision propagation was supported,
nodes would have to understand context in which
they are used to be able to send up useful deci-
sions. However, this context differs for different in-
spections. consequently, internal node knowledge
would have to be modified with each new inspection
the node was used in. This approach would result
in an interrelated unmaintainable database.

2.2 Bottle Top Inspection

Let us show inspection synthesis on a simple ex-
ample of the Bottle Top Inspection. The objective
is to detect cracks on the glass top surface. The
inspection consists of four basic steps:

1. Image Acquisition,

2. Bottle Top Position Detection,

3. Bottle Top Unwrapping,

4. Crack Detection.

Processed images are shown in the Figure 2. Bot-
tle position can be determined either by the Hough
transformation looking for a bright circle or by two
gage tools detecting a bottle edge. The cracks can
be detected either by simple thresholding or by the
morphological Top Hat operator. The inspection
AND/OR tree is depicted on the Figure 1. Based
on this tree, it is possible to generate a t most four
alternative solutions.

--

Figure 1: Bottle Top Inspection Tree: rectangles = (c) - -
plans (AND nodes), rounded rectangles = operators
(OR nodes - underlined text).

Figure 2: Bottle Top Inspection Images: (a) input,
The inspection is generated by traversing the (b) unwrapped, (c) segmented cracks.

AND/OR scheme. This process forms an inspec-
tion AND/OR tree (see Figure 1). Within this tree,

Inspection nodes contain various decision-making
lIPP stands for Image Processing Procedure. knowledge, for example: The "Position Detec-

tion" operator selects plans according to speed re-
quirements, the "Thresholding" operator optimizes
threshold value, and the "Position by Gages" plan
places gage tools.

3 Model Management

Decision making carried out in both operator and
plan nodes usually requires rich context information
to derive correct conclusions. Context information
is especially crucial for parameter optimization. It
often requires knowledge of expected tool outputs.
For instance, threshold for image binarization can be
properly set only if requested binary image is known
a priori. It is also the only case when binarization
performance can be evaluated. Majority of such con-
text information can be directly or indirectly derived
from models of inspected objects. Therefore, explicit
support of object models can significantly improve
reasoning for inspection synthesis.

The model is considered to be any piece of in-
formation that relates to an inspected object and
that can be utilized for decision making. The model
usually describes important object features. It is pa-
rameterized by training data. One object model can
be created for each training image if necessary. For
instance, the sufficient object model for the Bottle
Top inspection consists of two circles and one bi-
nary image that identify bottle top inner and outer
rims and crack pixels respectively, see Figure 3. This
structure contains all information necessary for se-
lecting parameter values for both position detection
and crack detection.

Figure 3: Bottle Top Model: two circles and binary
image (on a background of a grayed bottle top).

Since the object model contains important infor-
mation for decision making it has to be shared by
all inspection operators. However, the model can-
not be passed among them directly. Model struc-
ture depends on inspected objects, i.e. on inspec-
tion context. On the other hand, inspection opera-
tors should be context independent to keep database
flexible. For instance, it does not make sense for

the Gage operator to understand complete models
of various objects. What the operator only needs
to know is a range where an edge occurs within the
training image. Based on this information, the Gage
operator can adjust the Gage tool to that specific
edge regardless of the inspection it is a part of.

To keep database flexible the operators are de-
signed to understand and manipulate predefined
model types. The model types correspond to tasks
the operators are designed to deal with. For in-
stance, the thresholding operator accepts binary im-
age, the gage operator accepts a range of edge occur-
rence, the Hough transformation accepts description
of a searched circle, etc. Since one inspection tree
can contain operators working with different model
types, the model has to be transformed when passed
among operators.

The proposed model management is designed
such that the system does not rely on externally
provided models. It is able to create model by it-
self, hence working partly as an image understand-
ing system. However, it strongly relies on interac-
tion with the user, thus model development is just
semi-automatic.

3.1 Model Management ~ n o w l e d ~ e

The model is built as the system traverses the in-
spection AND/OR tree. Model development knowl-
edge is distributed among nodes like knowledge for
inspection synthesis. This distribution stems from
two reasons:

1. equivalence of root and branch operators,

2. sharing of model development knowledge.

Ad (I) , the system does not distinguish any specific
class of root nodes. Any operator node can become a
root node which allows the user to program both the
whole inspections and any of their parts. The root
node is not provided with a model therefore no node
can rely on externally given one. If the model is not
provided but it is crucial for reasoning, the operator
has to create it by itself. Ad (2), well structured op-
erators enable sharing of model development knowl-
edge. For instance, the "Detect Position" operator
of the Bottle Top inspection searches for two circles,
bottle rims, that contain sufficient information for
position solving operators. The "Detect Position"
operator can be used in other bottle inspections, for
example in scuffing evaluation. In such case, the
model development knowledge can be utilized too.

The model management knowledge is represented
by rules. Tasks accomplished by these rules corre-
spond to a node type:

Operators represent working units. They encap-
sulate specific image processing. The operators

have to determine selected characteristics of in-
spected objects to be able to properly adjust
processing behavior.

Plans link operators together. They adminis-
trate sharing of detected object properties (ob-
ject models).

Plan behavior depends on whether the model is
provided or not. Plans enable two ways of model
management:

top-down: If the model is provided, plans re-
trieve model pieces as they are required by plan
operators. These pieces are transformed into a
suitable form before passing to the operators.

bottom-up: If the model is not provided, plans
collect partial models developed by operators,
compose them into one model and check its con-
sistency. If consistency is broken the model is
corrected and last reasoning is redone.

The top-down approach is suitable if the object
model is complex, highly constrained, therefore
should be created at once having all information
available. The bottom-up approach is suitable if the
model is simple, consisting of relatively independent
parts, therefore allowing wide sharing of model de-
velopment knowledge. See Figure 4.

In the Bottle Top example, there are two oper-
ators building the model. The "Detect Position"
identifies bottle rims and the "Crack Detection" seg-
ments cracks. The "Bottle Top Plan" composes
these pieces and checks if all cracks are within the
circles. Other plans transform partial models into
appropriate models for tool operators. For instance,
the "Position by Gages" sets gage positions and then
calculates intersection of gages with a selected circle.
It is the place where the edge should be searched for.

4 Conclusion

The presented model management considerably
improves reasoning for inspection synthesis. Model
development is driven by synthesis process which al-
lows the system to focus on relevant object prop-
erties. The necessary condition of model sharing
resulted in predefined model types which, in turn,
allows sharing of model development knowledge.

Although inspection is generated top-down, the
model can be built in both top-down and bottom-up
ways. Both approaches can be combined. It enables
distribution of model development that is adequate
to solved tasks. Model development in the abstract
operators utilizes implicit knowledge given by oper-
ator tasks, thus it is more reliable. On the other
hand, model development in the IPP operators en-
ables wider sharing of the model knowledge.

The presented model management fits well into
system reasoning. It does not increase system
complexity while preserving database flexibility.
Model management knowledge is well structured like
knowledge for inspection synthesis. It stems from
correspondence between organization of knowledge
for skeletal planning and structure of object models
(inspection knowledge as an AND/OR tree - model
as a graphltree structure).

Knowledge Base

Figure 4: Model Development in a Context of In-
spection Synthesis.

References

[I] T. Matsuyama. Expert systems for image pro-
cessing: Knowledge-based composition of image
analysis processes. CVGIP, 48:22-49, 1989.

[2] V. Clbment and M. Tonnant. A knowledge-based
approach to integration of image processing pro-
cedures. CVGIP: Image Understanding, 57(2):166-
184, March 1993.

[3] S. A. Chien. Automated synthesis of image pro-
cessing procedures for a large-scale image database.
In Proceedings of ICIP794 , pages 796-800.1994.

[4] S. Moisan and M. Thonnat. Knowledge-based
systems for program supervision. In 1st Inter-
national Workshop on Knowledge Based Systems
for the (re)Use of Program Libraries KBUP795,
INRIA, pages 4-8, Nov 1995.

[5] R. Bodington. A software environment for the
automatic configuration of inspection systems.
In Proceedings of KBUP795, pages 99-108.

[6] R. Sablatnig. A Highly Adaptable Concept for
Visual Inspection. PhD thesis, Technischen Uni-
versitat Wien, Februar 1997.

[7] M. KrEmAi. and P. Kodl. System composing vi-
sion inspections. In Engineering of Intelligent
Systems EIS'98, pages 404-410. ICSC Canada,
ICSC Academic Press, 1998.

[8] P. R. Cohen and E. A. Fiegenbaum. Handbook of
Artificial Intelligence, volume 111. Pitman, Lon-
don/New York, 1982.

