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Abstract accordingly. However, they are not able to build 

The article presents a possible approach to model 
management in a knowledge-based system with dis- 
tributed knowledge. The knowledge based system 
is designed to automatically generate vision inspec- 
tions. The proposed model management mechanism 
extends system reasoning power without increasing 
system complexity. The model management knowl- 
edge is structured similarly to knowledge for inspec- 
tion synthesis. Consequently, important advantages 
of knowledge organization like sharing, flexibility, in- 
dependence, etc. are preserved for both kinds of 
knowledge. 

and manipulate models if these are not provided ex- 
ternally (see [6,  51). The CAD models also do not 
contain some important information, for instance, 
explicit description of object defects as they occur 
in training images. Presented model management 
overcomes some of these disadvantages. 

2 Vision Inspection Synthesis 

Our testing environment SYGEVIN (see [7]) is 
a knowledge-based system that automatically gen- 
erates vision inspections. It accepts three types of 
input data: 

specification of vision inspection objectives, 
1 Automatic Vision Programming 

training images, 

Aut,omatic design of industrial vision inspections 
can be viewed as a computer aided synthesis of vi- 
sion programs. Systems providing this type of ser- 
vices are designed especially to enable efficient uti- 
lization of large vision libraries even by experts from 
other fields (see [I, 2, 3, 41). 

Comparing to general vision programs, indus- 
trial vision inspections exhibit some specialities. 
Used vision algorithms are relatively simple due to 
speed requirements. Processed images are usually 
of good quality because acquisition process can be 
controlled. On the other hand, vision inspections are 
executed repeatedly on many images for a long time. 
Image properties can vary within certain range thus 
the inspection has to be well adjusted. 

Systems generating vision inspections do not 
build programs from scratch. Instead, they usually 
compose inspection algorithms from library func- 
tions, called vision tools. To produce reliable, well 
adjusted inspections the systems have to utilize all 
available information during inspection set up. Be- 
side training images they often retrieve a lot of con- 
text information interacting with a user. Models of 
inspected objects represent important pieces of such 
information. 

Systems for aided inspection design usually can 
accept CAD object models and set up inspections 
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context information. 

All these pieces of information are provided by the 
user. Based on input data, the system generates 
vision inspection programs. These programs define 
inspection structure, i.e. sequence of selected vision 
tools together with data flow, and parameter values 
for used vision tools. The system is able to generate 
more inspections if its database allows alternative 
solutions of given task. 

2.1 Reasoning Model 

The reasoning for inspection synthesis consists of 
two subtasks: 

planning 

parameter selection 

The plan reasoning is carried out as a skeletal plan- 
ning (see [a]). Given inspection objectives define an 
inspection goal for which the system selects the most 
suitable skeletal plan from its database. The skeletal 
plan itself is again a sequence of goals, i.e. inspec- 
tion sub-goals. The sub-goals can be both simple 
and complex. Simple goals are fulfilled by apply- 
ing one vision tool while complex goals have to be 
further decomposed. Skeletal plan based decompo- 
sition continues until the plan consists of only simple 
goals. 



The parameter selection is carried out as rule 
based reasoning. On contrary to  planning, which is 
goal-driven, parameter selection is data-driven. Pa- 
rameters are usually optimized using trial-and-error 
approach. Constraints on vision tool outputs are de- 
termined and then parameter values are selected to  
satisfy them. For instance, optimizing a gage tool 
the system identifies range where the edge should 
occur and then adjusts correlation kernel. 

System reasoning is implemented using AND/OR 
schemes. Scheme structure reflects skeletal planning 
hierarchy. Scheme nodes encapsulate data driven 
decision making. It  is possible to  distinguish three 
node types: 

AND nodes, called Plans, correspond to skeletal 
plans, 

OR nodes, called Abstract Operators, correspond 
to complex goals, 

leaf nodes, called IPP Operators ', correspond to 
simple goals. 

Decision making knowledge is represented by 
rules. It is distributed among the scheme nodes. 
Knowledge is organized such that different types of 
nodes make different decisions. OR nodes select the 
most promising plans from connected AND nodes. 
They define sequences in which alternative plans are 
examined. Leaf nodes select parameter values for 
vision tools. They address parameters that can be 
optimized a t  this level. AND nodes select values for 
parameters that have to be coordinated over several 
tools. For instance, detecting object position using 
gage tools the tool locations have to be selected for 
all gage tools at once. 
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the system allows to propagate decisions only down- 
ward. For instance, parameter values selected in 
AND nodes are propagated to corresponding leaf 
nodes. It is not possible to propagate any deci- 
sion into upper levels. This restriction imposes quite 
strong structure to the system knowledge and in- 
creases flexibility. Nodes can be plugged into other 
inspections without modifying their internal knowl- 
edge. If upward decision propagation was supported, 
nodes would have to understand context in which 
they are used to  be able to send up useful deci- 
sions. However, this context differs for different in- 
spections. consequently, internal node knowledge 
would have to be modified with each new inspection 
the node was used in. This approach would result 
in an interrelated unmaintainable database. 

2.2 Bottle Top Inspection 

Let us show inspection synthesis on a simple ex- 
ample of the Bottle Top Inspection. The objective 
is to detect cracks on the glass top surface. The 
inspection consists of four basic steps: 

1. Image Acquisition, 

2. Bottle Top Position Detection, 

3. Bottle Top Unwrapping, 

4. Crack Detection. 

Processed images are shown in the Figure 2. Bot- 
tle position can be determined either by the Hough 
transformation looking for a bright circle or by two 
gage tools detecting a bottle edge. The cracks can 
be detected either by simple thresholding or by the 
morphological Top Hat operator. The inspection 
AND/OR tree is depicted on the Figure 1. Based 
on this tree, it is possible to  generate a t  most four 
alternative solutions. 

-- 

Figure 1: Bottle Top Inspection Tree: rectangles = (c) - - 
plans (AND nodes), rounded rectangles = operators 
(OR nodes - underlined text). 

Figure 2: Bottle Top Inspection Images: (a) input, 
The inspection is generated by traversing the (b) unwrapped, (c) segmented cracks. 

AND/OR scheme. This process forms an inspec- 
tion AND/OR tree (see Figure 1). Within this tree, 

Inspection nodes contain various decision-making 
lIPP stands for Image Processing Procedure. knowledge, for example: The "Position Detec- 



tion" operator selects plans according to speed re- 
quirements, the "Thresholding" operator optimizes 
threshold value, and the "Position by Gages" plan 
places gage tools. 

3 Model Management 

Decision making carried out in both operator and 
plan nodes usually requires rich context information 
to derive correct conclusions. Context information 
is especially crucial for parameter optimization. It 
often requires knowledge of expected tool outputs. 
For instance, threshold for image binarization can be 
properly set only if requested binary image is known 
a priori. It is also the only case when binarization 
performance can be evaluated. Majority of such con- 
text information can be directly or indirectly derived 
from models of inspected objects. Therefore, explicit 
support of object models can significantly improve 
reasoning for inspection synthesis. 

The model is considered to  be any piece of in- 
formation that relates to  an inspected object and 
that can be utilized for decision making. The model 
usually describes important object features. It is pa- 
rameterized by training data. One object model can 
be created for each training image if necessary. For 
instance, the sufficient object model for the Bottle 
Top inspection consists of two circles and one bi- 
nary image that identify bottle top inner and outer 
rims and crack pixels respectively, see Figure 3. This 
structure contains all information necessary for se- 
lecting parameter values for both position detection 
and crack detection. 

Figure 3: Bottle Top Model: two circles and binary 
image (on a background of a grayed bottle top). 

Since the object model contains important infor- 
mation for decision making it has to be shared by 
all inspection operators. However, the model can- 
not be passed among them directly. Model struc- 
ture depends on inspected objects, i.e. on inspec- 
tion context. On the other hand, inspection opera- 
tors should be context independent to  keep database 
flexible. For instance, it does not make sense for 

the Gage operator to understand complete models 
of various objects. What the operator only needs 
to know is a range where an edge occurs within the 
training image. Based on this information, the Gage 
operator can adjust the Gage tool to that specific 
edge regardless of the inspection it is a part of. 

To keep database flexible the operators are de- 
signed to understand and manipulate predefined 
model types. The model types correspond to tasks 
the operators are designed to deal with. For in- 
stance, the thresholding operator accepts binary im- 
age, the gage operator accepts a range of edge occur- 
rence, the Hough transformation accepts description 
of a searched circle, etc. Since one inspection tree 
can contain operators working with different model 
types, the model has to  be transformed when passed 
among operators. 

The proposed model management is designed 
such that the system does not rely on externally 
provided models. It is able to create model by it- 
self, hence working partly as an image understand- 
ing system. However, it strongly relies on interac- 
tion with the user, thus model development is just 
semi-automatic. 

3.1 Model Management ~ n o w l e d ~ e  

The model is built as the system traverses the in- 
spection AND/OR tree. Model development knowl- 
edge is distributed among nodes like knowledge for 
inspection synthesis. This distribution stems from 
two reasons: 

1. equivalence of root and branch operators, 

2. sharing of model development knowledge. 

Ad ( I ) ,  the system does not distinguish any specific 
class of root nodes. Any operator node can become a 
root node which allows the user to  program both the 
whole inspections and any of their parts. The root 
node is not provided with a model therefore no node 
can rely on externally given one. If the model is not 
provided but it is crucial for reasoning, the operator 
has to  create it by itself. Ad (2), well structured op- 
erators enable sharing of model development knowl- 
edge. For instance, the "Detect Position" operator 
of the Bottle Top inspection searches for two circles, 
bottle rims, that contain sufficient information for 
position solving operators. The "Detect Position" 
operator can be used in other bottle inspections, for 
example in scuffing evaluation. In such case, the 
model development knowledge can be utilized too. 

The model management knowledge is represented 
by rules. Tasks accomplished by these rules corre- 
spond to  a node type: 

Operators represent working units. They encap- 
sulate specific image processing. The operators 



have to determine selected characteristics of in- 
spected objects to be able to properly adjust 
processing behavior. 

Plans link operators together. They adminis- 
trate sharing of detected object properties (ob- 
ject models). 

Plan behavior depends on whether the model is 
provided or not. Plans enable two ways of model 
management: 

top-down: If the model is provided, plans re- 
trieve model pieces as they are required by plan 
operators. These pieces are transformed into a 
suitable form before passing to the operators. 

bottom-up: If the model is not provided, plans 
collect partial models developed by operators, 
compose them into one model and check its con- 
sistency. If consistency is broken the model is 
corrected and last reasoning is redone. 

The top-down approach is suitable if the object 
model is complex, highly constrained, therefore 
should be created at once having all information 
available. The bottom-up approach is suitable if the 
model is simple, consisting of relatively independent 
parts, therefore allowing wide sharing of model de- 
velopment knowledge. See Figure 4. 

In the Bottle Top example, there are two oper- 
ators building the model. The "Detect Position" 
identifies bottle rims and the "Crack Detection" seg- 
ments cracks. The "Bottle Top Plan" composes 
these pieces and checks if all cracks are within the 
circles. Other plans transform partial models into 
appropriate models for tool operators. For instance, 
the "Position by Gages" sets gage positions and then 
calculates intersection of gages with a selected circle. 
It is the place where the edge should be searched for. 

4 Conclusion 

The presented model management considerably 
improves reasoning for inspection synthesis. Model 
development is driven by synthesis process which al- 
lows the system to focus on relevant object prop- 
erties. The necessary condition of model sharing 
resulted in predefined model types which, in turn, 
allows sharing of model development knowledge. 

Although inspection is generated top-down, the 
model can be built in both top-down and bottom-up 
ways. Both approaches can be combined. It enables 
distribution of model development that is adequate 
to solved tasks. Model development in the abstract 
operators utilizes implicit knowledge given by oper- 
ator tasks, thus it is more reliable. On the other 
hand, model development in the IPP operators en- 
ables wider sharing of the model knowledge. 

The presented model management fits well into 
system reasoning. It does not increase system 
complexity while preserving database flexibility. 
Model management knowledge is well structured like 
knowledge for inspection synthesis. It stems from 
correspondence between organization of knowledge 
for skeletal planning and structure of object models 
(inspection knowledge as an AND/OR tree - model 
as a graphltree structure). 

Knowledge Base 

Figure 4: Model Development in a Context of In- 
spection Synthesis. 
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