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Abstract 

The purpose of this study is to establish the tech- 
nique for estimating optical flow with high accuracy 
and robustness using gradient-based method with 
local optimization. To obtain high accuracy, we 
should understand error sources and how to reduce 
the errors. We proposed error reduction techniques 
for gradient measurement error which are a spatio- 
temporal median filter to reduce sensor noise and a 
spatio-temporal derivative filter to estimate gradi- 
ents of image function. The result shows that the 
spatio-temporal median filter can reduce the sensor 
noises very well, both of white noise and thermal 
noise of CCD camera. Furthermore, the best per- 
formance is achieved by the successive filtering of 
the Gussian filter and the spatio-temporal median 
filter. We also confirmed that estimation of par- 
tial derivatives of image function using the spatio- 
temporal derivative filter improved the accuracy of 
optical flow. The proposed methods are hopeful for 
the detection of optical flow with high accuracy and 
good robustness from image sequence. 

1 Introduction 

Recently, sequential image processing have been 
attracted an increasing attention from the view- 
points of computer vision and physical measure- 
ment. Determining optical flow is one of the most 
important problems of image sequence processing. 
In the early study, however, only the calculation 
cost was picked up especially to realize a real time 
processing of instantaneous optical flow for robotic 
vision. Under the development of computer tech- 
nology, several authors have discussed the accuracy 
of estimated optical flow[l]. For measuring physi- 
cal parameters, the accuracy of estimated values be- 
comes more important than the calculation cost. In 
our recently study, we developed an evaluation tech- 
nique of body motion using gradient-based method 
with spatio-temporal local optimization[2], which 
aimed at medical treatment at home[3]. A person on 
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bed is captured by video camera under low intensity 
illumination, and the heart rate and the breath can 
be countered without any physical constraints. For 
more quantitative evaluation of body motion, the 
optical flow analysis is required to have robustness 
and high accuracy. 

The purpose of this study is to explore any error 
sources and to reduce the error in gradient-based 
method with local optimization. Kearney et.a1.[4] 
classified the sources of error in local estimates of op- 
tical flow into three types, 1.gradient measurement 
error, 2.non-constant flow, 3.ill-conditioning . In this 
study, we pay our attention to gradient measurement 
error under low intensity illumination. Several ap- 
proaches to reduce the error are demonst,rat,ed, and 
we propose a new method to improve the accuracy. 

2 Gradient-based Method with Local 
Optimization 

The following equation (1) shows the basic re- 
lationship between motion parameters and image 
derivatives. 

I*u + I y v +  It = 0,  (1) 

where I  represents the image intensity, and I, ,  I y ,  
and It are partial derivatives with respect to position 
x, y, and time t .  Motion parameters u, u are x 
and y components for the motion vector. In a small 
volume 6V, if it is assumed that every point has the. 
same velocity, the least square method can evaluate 
the motion parameters u, u. In this study, a spatio- 
temporal small volume (spatial size is 3 x 3 pixels and 
temporal size is 3 frames) is utilized to determine 
optical flow field. This can be called spatio-temporal 
local optimization technique[2]. 

3 Sources of gradient measurement 
error and error reduction tech- 
niques 

Sources of gradient measurement error are made 
up of 1) sensor noise, 2) quantization noise, 3) non- 
linearities in the brightness function in the direction 
of optical flow, and 4) optical flow magnitude(4j. 1) 



Figure 1: Sovel's derivative spatial filter (x axis). 

Figure 2: Spatio-temporal derivative spatial filter (x 
axis). The frame (i) is the target frame. 

and 2) are random error, and 3) and 4) are sys- 
tematic error. Determining optical flow under low 
intensity illumination, the random error 1) and 2) 
are very important. Therefore, techniques to reduce 
the sensor noise and quantization noise are required. 

To reduce the sensor noise, three digital image 
filters are tested. These are the ordinary spatial 
median filter (spatial size is 3 x 3  pixels), the Gaus- 
sian filter (spatial size is 3 x 3  pixels) and the spatio- 
temporal median filter (spatio-temporal size is 3 x 3  
pixels and 3 frames) which we introduced as a new 
trial. We call the new filter by ST  median filter. The 
ST  median filter selects a median intensity from im- 
age function having a spatio-temporal local volume 
(3x3 pixels and 3 frames). The ordinary spatial fil- 
ters (such as median filter and the Gaussian filter) 
are known as popular technique to reduce noise on 
image. ' 

In gradient based method, space and time deriva- 
tives are very important factor, because the space 
and time derivatives affect gradient measurement er- 
ror. The most popular derivative spatial filter is 
Sovel's filters (Fig.1). We propose an extended filter 
of Sovel's filters. It is called spatio-temporal deriva- 
tive filter which has a spatio-temporal size of 3 x 3  
pixels and 3 frames (Fig.2). 

4 Error Measurement 

Following Barron et.al.[l] we use an angular mea- 
sure of error. The angular error Q E  between the 

(a) Sinusoidal image (b) B e e  image 

Figure 3: One frame of synthetic images. 

correct velocity vc and an estimate ve is defined by 

A large QE means bad accuracy. 

5 Synthetic Image Sequence 

Two synthetic original image sequences are pre- 
pared. The first sequence represents a clockwise ro- 
tation of a simulation image (sinusoidal wave) (see 
Fig.S(a)). The second one shows a clockwise rota- 
tion of a tree image (see Fig.3(b)). Both image size 
is 64 x 64 pixels. The rotation speed of both se- 
quences is 0.04 radianlframe. The first sequence of 
rotated sinusoidal image has a character that did not 
include the third error source, ill-conditioning prob- 
lem, classified by Kearney et.a1.[4]. On the other 
side, the second sequence includes ill-conditioning 
problem area. 

Then, five kinds of noises were added to the se- 
quences. Noise (a) and (b) were the white noise, 
whose rates were 1% and 5%, respectively. Noise (c), 
(d), and (e) were extracted noises from a real image 
sequence that were captured under low intensity il- 
lumination (240 l ~ ) ,  (40 l ~ ) ,  and (40 k) respectively 
by a CCD camera (KY-F57, Victor) with automatic 
gain control (AGC) function. Where, Noise (e) was 
amplified twice as much as Noise (d). We call tenta- 
tively these noises by AGC noise. Twelve synthetic 
image sequences were made in all by the combina- 
tion of two synthetic original images and five noises 
(see Table 2, 3). 

6 Experimental Results 

At first, to compare between ordiriary Sovel's 
derivative filter and spatio-temporal derivative fil- 
ter, optical flow fields of the synthetic image se- 
quences were estimated without any filter to reduce 
sensor noise. The mean angular measures of error 
are shown in table 1. The proposed filter achieves 
better accuracy of optical flow than ordinary Sovel's 



Table 1: Mean angular measures of estimated optical 
flow error 

(a) Sovel's derivative (b) Proposed derivative 
filter filter 

Figure 4: Estimated optical flow fields of the tree 
image introduced by Sovel's derivative filter and the 
proposed filter. 

Proposed 
derivative 

filter 

2.06 " 

3.32 " 

Image type 

Sinusoidal 
image 

Tree image 

filter. The performance of the proposed filter is r e p  

Sovel's 
derivative 

filter 

2.21 " 

9.36 " 

resented more effectively in a synthetic image se- 
quence obtained by a tree image (see Fig.4). 

Then, five kinds of image filtering to reduce senser 
noises were introduced for twelve image sequences, 
as a preprocessing tool for the estimation of optical 
flow. Spati+temporal derivative filter was also in- 
troduced to estimate optical flow. Table 2 shows the 
relationship between averages of error of optical flow 
estimation for sinusoidal image sequences (image se- 
quence 1-6) and the types of image filters. On the 
image sequence 1 there is no noise, the Gaussian 
filter was effective to reduce the error. However, 
introduction of the ST median filterine: before the 
Gaussian filtering achieved the best acciracy for all 
noise image sequences. A typical result of the filter- 
ing is shown in FiR.5(b). The ordinary spatial me- 
dian filter can notachieve the same accuracv. We 
confirmed almost the same results in the evaluation 
of optical flow from the synthetic image sequence 
obtained by the tree image (see Table 3). The ST  
median filter is hopeful for the estimation of optical 

(a) Without filtering (b) With ST  median and 
Gaussian filtering 

Figure 5: Estimated optical flow fields of image se- 
quence 6. 

7 Summary 

Karney et. a1.[41 pointed out the effectiveness of 
the smoothing technique to reduce error of optical 
flow using gradient-based method with local opti- 
mization. The smoothing technique corresponds to 
the Gaussian filter in this study. We tested the per- 
formance of the ST  median filter. The results of 
this study indicate that the error of estimated op- 
tical flow was decreased by the ST median filtering 
before the Gaussian filter compared to using only 
the Gaussian filter. Spatio-temporal derivative fil- 
ter also decreased the error effectively. The combi- 
nations of those proposed techniques are very useful 
to determining optical flow under low intensity illu- 
mination. In order to expect higher accuracy and 
robustness, it is necessary to study the relationship 
between the other error sources and the error reduc- 
tion methods. 
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Table 2: Mean angular measures of estimated optical flow error for sinusoidal image. 

* Underline means the best accuracy in the image sequences. 

Table 3: Mean angular measures of estimated optical flow error for tree image. 

Sin. image + 
Noise (e) 

8.42' 

7.00" 

4.41' 

6.63" 

6.31' 

3.92" 

J J n a ! z d W W  
Sin. Image + 

Noise (d) 

4.34' 

3.99" 

3.00' 

3.63' 

3.65" 

2.76" 

* Underline means the best accuracy in the image sequences. 

Sin. image + 
Noise (c) 

3.14' 

3.08' 

2.53" 

2.80' 

2.89" 

& 

m 
Sin. image + 

Noise (b) 

17.14' 

4.09" 

3.07- 

12.68" 

3.72" 

a 

Tree image + 
Noise (e) 

13.36" 

15.63" 

11.16~ 

12.84" 

15.87" 

10.67" 

bw-2 
Sin .image + 

Noise (a) 

6.29" 

2.50" 

2.31' 

4.98O 

2.36" 

2.20' 

Filter type 

No filtering 

Median filter 

ST median filter 

Gaussian filter 

Median filter and 
Gaussian filter 

ST median filter and 
Gaussian filter 

Ixnud  
Sin. Image 
(no noise) 

2.06O 

2.12" 

2.13" 

2.04" 

2.06" 

2.07" 

Tree image + 
Noise (c) 

5.06' 

7.45' 

5.89" 

4.80' 

7.29' 

5.47O 

Tree image + 
Noise (b) 

28.50" 

8.14' 

6.19- 

27.61" 

7.83" 

5.92" 

I I U a 3 9 s -  
Tree Image + 

Noise (d) 

7.01" 

9.35" 

6.81' 

6.80" 

9.08" 

6.32' 

Imass3 
Tree image + 

Noise (a) 

11.73~ 

5.78O 

4.79" 

11.94" 

5.33' 

4.48" 

Filter type 

No filtering 

Median filter 

ST median filter 

Gaussian filter 

Median filter and 
Gaussian filter 

ST median filter and 
Gaussian filter 

I L r w f a  
Tree Image 
(no noise) 

3.32O 

5.12" 

4.40° 

2.92' 

4.74" 

4.15~ 




